zephyr/drivers/i2c/i2c_ll_stm32_v2.c

1186 lines
30 KiB
C

/*
* Copyright (c) 2016 BayLibre, SAS
* Copyright (c) 2017 Linaro Ltd
*
* SPDX-License-Identifier: Apache-2.0
*
* I2C Driver for: STM32F0, STM32F3, STM32F7, STM32L0, STM32L4, STM32WB and
* STM32WL
*
*/
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/sys/util.h>
#include <zephyr/kernel.h>
#include <soc.h>
#include <stm32_ll_i2c.h>
#include <errno.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/device_runtime.h>
#include "i2c_ll_stm32.h"
#define LOG_LEVEL CONFIG_I2C_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(i2c_ll_stm32_v2);
#include "i2c-priv.h"
#define STM32_I2C_TRANSFER_TIMEOUT_MSEC 500
#ifdef CONFIG_I2C_STM32_V2_TIMING
/* Use the algorithm to calcuate the I2C timing */
#ifndef STM32_I2C_VALID_TIMING_NBR
#define STM32_I2C_VALID_TIMING_NBR 128U
#endif
#define STM32_I2C_SPEED_FREQ_STANDARD 0U /* 100 kHz */
#define STM32_I2C_SPEED_FREQ_FAST 1U /* 400 kHz */
#define STM32_I2C_SPEED_FREQ_FAST_PLUS 2U /* 1 MHz */
#define STM32_I2C_ANALOG_FILTER_DELAY_MIN 50U /* ns */
#define STM32_I2C_ANALOG_FILTER_DELAY_MAX 260U /* ns */
#define STM32_I2C_USE_ANALOG_FILTER 1U
#define STM32_I2C_DIGITAL_FILTER_COEF 0U
#define STM32_I2C_PRESC_MAX 16U
#define STM32_I2C_SCLDEL_MAX 16U
#define STM32_I2C_SDADEL_MAX 16U
#define STM32_I2C_SCLH_MAX 256U
#define STM32_I2C_SCLL_MAX 256U
/* I2C_DEVICE_Private_Types */
struct stm32_i2c_charac_t {
uint32_t freq; /* Frequency in Hz */
uint32_t freq_min; /* Minimum frequency in Hz */
uint32_t freq_max; /* Maximum frequency in Hz */
uint32_t hddat_min; /* Minimum data hold time in ns */
uint32_t vddat_max; /* Maximum data valid time in ns */
uint32_t sudat_min; /* Minimum data setup time in ns */
uint32_t lscl_min; /* Minimum low period of the SCL clock in ns */
uint32_t hscl_min; /* Minimum high period of SCL clock in ns */
uint32_t trise; /* Rise time in ns */
uint32_t tfall; /* Fall time in ns */
uint32_t dnf; /* Digital noise filter coefficient */
};
struct stm32_i2c_timings_t {
uint32_t presc; /* Timing prescaler */
uint32_t tscldel; /* SCL delay */
uint32_t tsdadel; /* SDA delay */
uint32_t sclh; /* SCL high period */
uint32_t scll; /* SCL low period */
};
/* I2C_DEVICE Private Constants */
static const struct stm32_i2c_charac_t stm32_i2c_charac[] = {
[STM32_I2C_SPEED_FREQ_STANDARD] = {
.freq = 100000,
.freq_min = 80000,
.freq_max = 120000,
.hddat_min = 0,
.vddat_max = 3450,
.sudat_min = 250,
.lscl_min = 4700,
.hscl_min = 4000,
.trise = 640,
.tfall = 20,
.dnf = STM32_I2C_DIGITAL_FILTER_COEF,
},
[STM32_I2C_SPEED_FREQ_FAST] = {
.freq = 400000,
.freq_min = 320000,
.freq_max = 480000,
.hddat_min = 0,
.vddat_max = 900,
.sudat_min = 100,
.lscl_min = 1300,
.hscl_min = 600,
.trise = 250,
.tfall = 100,
.dnf = STM32_I2C_DIGITAL_FILTER_COEF,
},
[STM32_I2C_SPEED_FREQ_FAST_PLUS] = {
.freq = 1000000,
.freq_min = 800000,
.freq_max = 1200000,
.hddat_min = 0,
.vddat_max = 450,
.sudat_min = 50,
.lscl_min = 500,
.hscl_min = 260,
.trise = 60,
.tfall = 100,
.dnf = STM32_I2C_DIGITAL_FILTER_COEF,
},
};
static struct stm32_i2c_timings_t i2c_valid_timing[STM32_I2C_VALID_TIMING_NBR];
static uint32_t i2c_valid_timing_nbr;
#endif /* CONFIG_I2C_STM32_V2_TIMING */
static inline void msg_init(const struct device *dev, struct i2c_msg *msg,
uint8_t *next_msg_flags, uint16_t slave,
uint32_t transfer)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
if (LL_I2C_IsEnabledReloadMode(i2c)) {
LL_I2C_SetTransferSize(i2c, msg->len);
} else {
if (I2C_ADDR_10_BITS & data->dev_config) {
LL_I2C_SetMasterAddressingMode(i2c,
LL_I2C_ADDRESSING_MODE_10BIT);
LL_I2C_SetSlaveAddr(i2c, (uint32_t) slave);
} else {
LL_I2C_SetMasterAddressingMode(i2c,
LL_I2C_ADDRESSING_MODE_7BIT);
LL_I2C_SetSlaveAddr(i2c, (uint32_t) slave << 1);
}
if (!(msg->flags & I2C_MSG_STOP) && next_msg_flags &&
!(*next_msg_flags & I2C_MSG_RESTART)) {
LL_I2C_EnableReloadMode(i2c);
} else {
LL_I2C_DisableReloadMode(i2c);
}
LL_I2C_DisableAutoEndMode(i2c);
LL_I2C_SetTransferRequest(i2c, transfer);
LL_I2C_SetTransferSize(i2c, msg->len);
#if defined(CONFIG_I2C_TARGET)
data->master_active = true;
#endif
LL_I2C_Enable(i2c);
LL_I2C_GenerateStartCondition(i2c);
}
}
#ifdef CONFIG_I2C_STM32_INTERRUPT
static void stm32_i2c_disable_transfer_interrupts(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
LL_I2C_DisableIT_TX(i2c);
LL_I2C_DisableIT_RX(i2c);
LL_I2C_DisableIT_STOP(i2c);
LL_I2C_DisableIT_NACK(i2c);
LL_I2C_DisableIT_TC(i2c);
if (!data->smbalert_active) {
LL_I2C_DisableIT_ERR(i2c);
}
}
static void stm32_i2c_enable_transfer_interrupts(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
I2C_TypeDef *i2c = cfg->i2c;
LL_I2C_EnableIT_STOP(i2c);
LL_I2C_EnableIT_NACK(i2c);
LL_I2C_EnableIT_TC(i2c);
LL_I2C_EnableIT_ERR(i2c);
}
static void stm32_i2c_master_mode_end(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
stm32_i2c_disable_transfer_interrupts(dev);
if (LL_I2C_IsEnabledReloadMode(i2c)) {
LL_I2C_DisableReloadMode(i2c);
}
#if defined(CONFIG_I2C_TARGET)
data->master_active = false;
if (!data->slave_attached && !data->smbalert_active) {
LL_I2C_Disable(i2c);
}
#else
if (!data->smbalert_active) {
LL_I2C_Disable(i2c);
}
#endif
k_sem_give(&data->device_sync_sem);
}
#if defined(CONFIG_I2C_TARGET)
static void stm32_i2c_slave_event(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
const struct i2c_target_callbacks *slave_cb;
struct i2c_target_config *slave_cfg;
if (data->slave_cfg->flags != I2C_TARGET_FLAGS_ADDR_10_BITS) {
uint8_t slave_address;
/* Choose the right slave from the address match code */
slave_address = LL_I2C_GetAddressMatchCode(i2c) >> 1;
if (data->slave_cfg != NULL &&
slave_address == data->slave_cfg->address) {
slave_cfg = data->slave_cfg;
} else if (data->slave2_cfg != NULL &&
slave_address == data->slave2_cfg->address) {
slave_cfg = data->slave2_cfg;
} else {
__ASSERT_NO_MSG(0);
return;
}
} else {
/* On STM32 the LL_I2C_GetAddressMatchCode & (ISR register) returns
* only 7bits of address match so 10 bit dual addressing is broken.
* Revert to assuming single address match.
*/
if (data->slave_cfg != NULL) {
slave_cfg = data->slave_cfg;
} else {
__ASSERT_NO_MSG(0);
return;
}
}
slave_cb = slave_cfg->callbacks;
if (LL_I2C_IsActiveFlag_TXIS(i2c)) {
uint8_t val;
if (slave_cb->read_processed(slave_cfg, &val) < 0) {
LOG_ERR("Error continuing reading");
} else {
LL_I2C_TransmitData8(i2c, val);
}
return;
}
if (LL_I2C_IsActiveFlag_RXNE(i2c)) {
uint8_t val = LL_I2C_ReceiveData8(i2c);
if (slave_cb->write_received(slave_cfg, val)) {
LL_I2C_AcknowledgeNextData(i2c, LL_I2C_NACK);
}
return;
}
if (LL_I2C_IsActiveFlag_NACK(i2c)) {
LL_I2C_ClearFlag_NACK(i2c);
}
if (LL_I2C_IsActiveFlag_STOP(i2c)) {
stm32_i2c_disable_transfer_interrupts(dev);
/* Flush remaining TX byte before clearing Stop Flag */
LL_I2C_ClearFlag_TXE(i2c);
LL_I2C_ClearFlag_STOP(i2c);
slave_cb->stop(slave_cfg);
/* Prepare to ACK next transmissions address byte */
LL_I2C_AcknowledgeNextData(i2c, LL_I2C_ACK);
}
if (LL_I2C_IsActiveFlag_ADDR(i2c)) {
uint32_t dir;
LL_I2C_ClearFlag_ADDR(i2c);
dir = LL_I2C_GetTransferDirection(i2c);
if (dir == LL_I2C_DIRECTION_WRITE) {
if (slave_cb->write_requested(slave_cfg) < 0) {
LOG_ERR("Error initiating writing");
} else {
LL_I2C_EnableIT_RX(i2c);
}
} else {
uint8_t val;
if (slave_cb->read_requested(slave_cfg, &val) < 0) {
LOG_ERR("Error initiating reading");
} else {
LL_I2C_TransmitData8(i2c, val);
LL_I2C_EnableIT_TX(i2c);
}
}
stm32_i2c_enable_transfer_interrupts(dev);
}
}
/* Attach and start I2C as target */
int i2c_stm32_target_register(const struct device *dev,
struct i2c_target_config *config)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
uint32_t bitrate_cfg;
int ret;
if (!config) {
return -EINVAL;
}
if (data->slave_cfg && data->slave2_cfg) {
return -EBUSY;
}
if (data->master_active) {
return -EBUSY;
}
bitrate_cfg = i2c_map_dt_bitrate(cfg->bitrate);
ret = i2c_stm32_runtime_configure(dev, bitrate_cfg);
if (ret < 0) {
LOG_ERR("i2c: failure initializing");
return ret;
}
#if defined(CONFIG_PM_DEVICE_RUNTIME)
if (pm_device_wakeup_is_capable(dev)) {
/* Mark device as active */
(void)pm_device_runtime_get(dev);
/* Enable wake-up from stop */
LOG_DBG("i2c: enabling wakeup from stop");
LL_I2C_EnableWakeUpFromStop(cfg->i2c);
}
#endif /* defined(CONFIG_PM_DEVICE_RUNTIME) */
LL_I2C_Enable(i2c);
if (!data->slave_cfg) {
data->slave_cfg = config;
if (data->slave_cfg->flags == I2C_TARGET_FLAGS_ADDR_10_BITS) {
LL_I2C_SetOwnAddress1(i2c, config->address, LL_I2C_OWNADDRESS1_10BIT);
LOG_DBG("i2c: target #1 registered with 10-bit address");
} else {
LL_I2C_SetOwnAddress1(i2c, config->address << 1U, LL_I2C_OWNADDRESS1_7BIT);
LOG_DBG("i2c: target #1 registered with 7-bit address");
}
LL_I2C_EnableOwnAddress1(i2c);
LOG_DBG("i2c: target #1 registered");
} else {
data->slave2_cfg = config;
if (data->slave2_cfg->flags == I2C_TARGET_FLAGS_ADDR_10_BITS) {
return -EINVAL;
}
LL_I2C_SetOwnAddress2(i2c, config->address << 1U,
LL_I2C_OWNADDRESS2_NOMASK);
LL_I2C_EnableOwnAddress2(i2c);
LOG_DBG("i2c: target #2 registered");
}
data->slave_attached = true;
LL_I2C_EnableIT_ADDR(i2c);
return 0;
}
int i2c_stm32_target_unregister(const struct device *dev,
struct i2c_target_config *config)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
if (!data->slave_attached) {
return -EINVAL;
}
if (data->master_active) {
return -EBUSY;
}
if (config == data->slave_cfg) {
LL_I2C_DisableOwnAddress1(i2c);
data->slave_cfg = NULL;
LOG_DBG("i2c: slave #1 unregistered");
} else if (config == data->slave2_cfg) {
LL_I2C_DisableOwnAddress2(i2c);
data->slave2_cfg = NULL;
LOG_DBG("i2c: slave #2 unregistered");
} else {
return -EINVAL;
}
/* Return if there is a slave remaining */
if (data->slave_cfg || data->slave2_cfg) {
LOG_DBG("i2c: target#%c still registered", data->slave_cfg?'1':'2');
return 0;
}
/* Otherwise disable I2C */
LL_I2C_DisableIT_ADDR(i2c);
stm32_i2c_disable_transfer_interrupts(dev);
LL_I2C_ClearFlag_NACK(i2c);
LL_I2C_ClearFlag_STOP(i2c);
LL_I2C_ClearFlag_ADDR(i2c);
if (!data->smbalert_active) {
LL_I2C_Disable(i2c);
}
#if defined(CONFIG_PM_DEVICE_RUNTIME)
if (pm_device_wakeup_is_capable(dev)) {
/* Disable wake-up from STOP */
LOG_DBG("i2c: disabling wakeup from stop");
LL_I2C_DisableWakeUpFromStop(i2c);
/* Release the device */
(void)pm_device_runtime_put(dev);
}
#endif /* defined(CONFIG_PM_DEVICE_RUNTIME) */
data->slave_attached = false;
return 0;
}
#endif /* defined(CONFIG_I2C_TARGET) */
static void stm32_i2c_event(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
#if defined(CONFIG_I2C_TARGET)
if (data->slave_attached && !data->master_active) {
stm32_i2c_slave_event(dev);
return;
}
#endif
if (data->current.len) {
/* Send next byte */
if (LL_I2C_IsActiveFlag_TXIS(i2c)) {
LL_I2C_TransmitData8(i2c, *data->current.buf);
}
/* Receive next byte */
if (LL_I2C_IsActiveFlag_RXNE(i2c)) {
*data->current.buf = LL_I2C_ReceiveData8(i2c);
}
data->current.buf++;
data->current.len--;
}
/* NACK received */
if (LL_I2C_IsActiveFlag_NACK(i2c)) {
LL_I2C_ClearFlag_NACK(i2c);
data->current.is_nack = 1U;
/*
* AutoEndMode is always disabled in master mode,
* so send a stop condition manually
*/
LL_I2C_GenerateStopCondition(i2c);
return;
}
/* STOP received */
if (LL_I2C_IsActiveFlag_STOP(i2c)) {
LL_I2C_ClearFlag_STOP(i2c);
LL_I2C_DisableReloadMode(i2c);
goto end;
}
/* Transfer Complete or Transfer Complete Reload */
if (LL_I2C_IsActiveFlag_TC(i2c) ||
LL_I2C_IsActiveFlag_TCR(i2c)) {
/* Issue stop condition if necessary */
if (data->current.msg->flags & I2C_MSG_STOP) {
LL_I2C_GenerateStopCondition(i2c);
} else {
stm32_i2c_disable_transfer_interrupts(dev);
k_sem_give(&data->device_sync_sem);
}
}
return;
end:
stm32_i2c_master_mode_end(dev);
}
static int stm32_i2c_error(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
#if defined(CONFIG_I2C_TARGET)
if (data->slave_attached && !data->master_active) {
/* No need for a slave error function right now. */
return 0;
}
#endif
if (LL_I2C_IsActiveFlag_ARLO(i2c)) {
LL_I2C_ClearFlag_ARLO(i2c);
data->current.is_arlo = 1U;
goto end;
}
if (LL_I2C_IsActiveFlag_BERR(i2c)) {
LL_I2C_ClearFlag_BERR(i2c);
data->current.is_err = 1U;
goto end;
}
#if defined(CONFIG_SMBUS_STM32_SMBALERT)
if (LL_I2C_IsActiveSMBusFlag_ALERT(i2c)) {
LL_I2C_ClearSMBusFlag_ALERT(i2c);
if (data->smbalert_cb_func != NULL) {
data->smbalert_cb_func(data->smbalert_cb_dev);
}
goto end;
}
#endif
return 0;
end:
stm32_i2c_master_mode_end(dev);
return -EIO;
}
#ifdef CONFIG_I2C_STM32_COMBINED_INTERRUPT
void stm32_i2c_combined_isr(void *arg)
{
const struct device *dev = (const struct device *) arg;
if (stm32_i2c_error(dev)) {
return;
}
stm32_i2c_event(dev);
}
#else
void stm32_i2c_event_isr(void *arg)
{
const struct device *dev = (const struct device *) arg;
stm32_i2c_event(dev);
}
void stm32_i2c_error_isr(void *arg)
{
const struct device *dev = (const struct device *) arg;
stm32_i2c_error(dev);
}
#endif
static int stm32_i2c_msg_write(const struct device *dev, struct i2c_msg *msg,
uint8_t *next_msg_flags, uint16_t slave)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
bool is_timeout = false;
data->current.len = msg->len;
data->current.buf = msg->buf;
data->current.is_write = 1U;
data->current.is_nack = 0U;
data->current.is_err = 0U;
data->current.msg = msg;
msg_init(dev, msg, next_msg_flags, slave, LL_I2C_REQUEST_WRITE);
stm32_i2c_enable_transfer_interrupts(dev);
LL_I2C_EnableIT_TX(i2c);
if (k_sem_take(&data->device_sync_sem,
K_MSEC(STM32_I2C_TRANSFER_TIMEOUT_MSEC)) != 0) {
stm32_i2c_master_mode_end(dev);
k_sem_take(&data->device_sync_sem, K_FOREVER);
is_timeout = true;
}
if (data->current.is_nack || data->current.is_err ||
data->current.is_arlo || is_timeout) {
goto error;
}
return 0;
error:
if (data->current.is_arlo) {
LOG_DBG("%s: ARLO %d", __func__,
data->current.is_arlo);
data->current.is_arlo = 0U;
}
if (data->current.is_nack) {
LOG_DBG("%s: NACK", __func__);
data->current.is_nack = 0U;
}
if (data->current.is_err) {
LOG_DBG("%s: ERR %d", __func__,
data->current.is_err);
data->current.is_err = 0U;
}
if (is_timeout) {
LOG_DBG("%s: TIMEOUT", __func__);
}
return -EIO;
}
static int stm32_i2c_msg_read(const struct device *dev, struct i2c_msg *msg,
uint8_t *next_msg_flags, uint16_t slave)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
bool is_timeout = false;
data->current.len = msg->len;
data->current.buf = msg->buf;
data->current.is_write = 0U;
data->current.is_arlo = 0U;
data->current.is_err = 0U;
data->current.is_nack = 0U;
data->current.msg = msg;
msg_init(dev, msg, next_msg_flags, slave, LL_I2C_REQUEST_READ);
stm32_i2c_enable_transfer_interrupts(dev);
LL_I2C_EnableIT_RX(i2c);
if (k_sem_take(&data->device_sync_sem,
K_MSEC(STM32_I2C_TRANSFER_TIMEOUT_MSEC)) != 0) {
stm32_i2c_master_mode_end(dev);
k_sem_take(&data->device_sync_sem, K_FOREVER);
is_timeout = true;
}
if (data->current.is_nack || data->current.is_err ||
data->current.is_arlo || is_timeout) {
goto error;
}
return 0;
error:
if (data->current.is_arlo) {
LOG_DBG("%s: ARLO %d", __func__,
data->current.is_arlo);
data->current.is_arlo = 0U;
}
if (data->current.is_nack) {
LOG_DBG("%s: NACK", __func__);
data->current.is_nack = 0U;
}
if (data->current.is_err) {
LOG_DBG("%s: ERR %d", __func__,
data->current.is_err);
data->current.is_err = 0U;
}
if (is_timeout) {
LOG_DBG("%s: TIMEOUT", __func__);
}
return -EIO;
}
#else /* !CONFIG_I2C_STM32_INTERRUPT */
static inline int check_errors(const struct device *dev, const char *funcname)
{
const struct i2c_stm32_config *cfg = dev->config;
I2C_TypeDef *i2c = cfg->i2c;
if (LL_I2C_IsActiveFlag_NACK(i2c)) {
LL_I2C_ClearFlag_NACK(i2c);
LOG_DBG("%s: NACK", funcname);
goto error;
}
if (LL_I2C_IsActiveFlag_ARLO(i2c)) {
LL_I2C_ClearFlag_ARLO(i2c);
LOG_DBG("%s: ARLO", funcname);
goto error;
}
if (LL_I2C_IsActiveFlag_OVR(i2c)) {
LL_I2C_ClearFlag_OVR(i2c);
LOG_DBG("%s: OVR", funcname);
goto error;
}
if (LL_I2C_IsActiveFlag_BERR(i2c)) {
LL_I2C_ClearFlag_BERR(i2c);
LOG_DBG("%s: BERR", funcname);
goto error;
}
return 0;
error:
if (LL_I2C_IsEnabledReloadMode(i2c)) {
LL_I2C_DisableReloadMode(i2c);
}
return -EIO;
}
static inline int msg_done(const struct device *dev,
unsigned int current_msg_flags)
{
const struct i2c_stm32_config *cfg = dev->config;
I2C_TypeDef *i2c = cfg->i2c;
/* Wait for transfer to complete */
while (!LL_I2C_IsActiveFlag_TC(i2c) && !LL_I2C_IsActiveFlag_TCR(i2c)) {
if (check_errors(dev, __func__)) {
return -EIO;
}
}
/* Issue stop condition if necessary */
if (current_msg_flags & I2C_MSG_STOP) {
LL_I2C_GenerateStopCondition(i2c);
while (!LL_I2C_IsActiveFlag_STOP(i2c)) {
}
LL_I2C_ClearFlag_STOP(i2c);
LL_I2C_DisableReloadMode(i2c);
}
return 0;
}
static int stm32_i2c_msg_write(const struct device *dev, struct i2c_msg *msg,
uint8_t *next_msg_flags, uint16_t slave)
{
const struct i2c_stm32_config *cfg = dev->config;
I2C_TypeDef *i2c = cfg->i2c;
unsigned int len = 0U;
uint8_t *buf = msg->buf;
msg_init(dev, msg, next_msg_flags, slave, LL_I2C_REQUEST_WRITE);
len = msg->len;
while (len) {
while (1) {
if (LL_I2C_IsActiveFlag_TXIS(i2c)) {
break;
}
if (check_errors(dev, __func__)) {
return -EIO;
}
}
LL_I2C_TransmitData8(i2c, *buf);
buf++;
len--;
}
return msg_done(dev, msg->flags);
}
static int stm32_i2c_msg_read(const struct device *dev, struct i2c_msg *msg,
uint8_t *next_msg_flags, uint16_t slave)
{
const struct i2c_stm32_config *cfg = dev->config;
I2C_TypeDef *i2c = cfg->i2c;
unsigned int len = 0U;
uint8_t *buf = msg->buf;
msg_init(dev, msg, next_msg_flags, slave, LL_I2C_REQUEST_READ);
len = msg->len;
while (len) {
while (!LL_I2C_IsActiveFlag_RXNE(i2c)) {
if (check_errors(dev, __func__)) {
return -EIO;
}
}
*buf = LL_I2C_ReceiveData8(i2c);
buf++;
len--;
}
return msg_done(dev, msg->flags);
}
#endif
#ifdef CONFIG_I2C_STM32_V2_TIMING
/*
* Macro used to fix the compliance check warning :
* "DEEP_INDENTATION: Too many leading tabs - consider code refactoring
* in the i2c_compute_scll_sclh() function below
*/
#define I2C_LOOP_SCLH(); \
if ((tscl >= clk_min) && \
(tscl <= clk_max) && \
(tscl_h >= stm32_i2c_charac[i2c_speed].hscl_min) && \
(ti2cclk < tscl_h)) { \
\
int32_t error = (int32_t)tscl - (int32_t)ti2cspeed; \
\
if (error < 0) { \
error = -error; \
} \
\
if ((uint32_t)error < prev_error) { \
prev_error = (uint32_t)error; \
i2c_valid_timing[count].scll = scll; \
i2c_valid_timing[count].sclh = sclh; \
ret = count; \
} \
}
/*
* @brief Calculate SCLL and SCLH and find best configuration.
* @param clock_src_freq I2C source clock in Hz.
* @param i2c_speed I2C frequency (index).
* @retval config index (0 to I2C_VALID_TIMING_NBR], 0xFFFFFFFF for no valid config.
*/
uint32_t i2c_compute_scll_sclh(uint32_t clock_src_freq, uint32_t i2c_speed)
{
uint32_t ret = 0xFFFFFFFFU;
uint32_t ti2cclk;
uint32_t ti2cspeed;
uint32_t prev_error;
uint32_t dnf_delay;
uint32_t clk_min, clk_max;
uint32_t scll, sclh;
uint32_t tafdel_min;
ti2cclk = (NSEC_PER_SEC + (clock_src_freq / 2U)) / clock_src_freq;
ti2cspeed = (NSEC_PER_SEC + (stm32_i2c_charac[i2c_speed].freq / 2U)) /
stm32_i2c_charac[i2c_speed].freq;
tafdel_min = (STM32_I2C_USE_ANALOG_FILTER == 1U) ?
STM32_I2C_ANALOG_FILTER_DELAY_MIN :
0U;
/* tDNF = DNF x tI2CCLK */
dnf_delay = stm32_i2c_charac[i2c_speed].dnf * ti2cclk;
clk_max = NSEC_PER_SEC / stm32_i2c_charac[i2c_speed].freq_min;
clk_min = NSEC_PER_SEC / stm32_i2c_charac[i2c_speed].freq_max;
prev_error = ti2cspeed;
for (uint32_t count = 0; count < STM32_I2C_VALID_TIMING_NBR; count++) {
/* tPRESC = (PRESC+1) x tI2CCLK*/
uint32_t tpresc = (i2c_valid_timing[count].presc + 1U) * ti2cclk;
for (scll = 0; scll < STM32_I2C_SCLL_MAX; scll++) {
/* tLOW(min) <= tAF(min) + tDNF + 2 x tI2CCLK + [(SCLL+1) x tPRESC ] */
uint32_t tscl_l = tafdel_min + dnf_delay +
(2U * ti2cclk) + ((scll + 1U) * tpresc);
/*
* The I2CCLK period tI2CCLK must respect the following conditions:
* tI2CCLK < (tLOW - tfilters) / 4 and tI2CCLK < tHIGH
*/
if ((tscl_l > stm32_i2c_charac[i2c_speed].lscl_min) &&
(ti2cclk < ((tscl_l - tafdel_min - dnf_delay) / 4U))) {
for (sclh = 0; sclh < STM32_I2C_SCLH_MAX; sclh++) {
/*
* tHIGH(min) <= tAF(min) + tDNF +
* 2 x tI2CCLK + [(SCLH+1) x tPRESC]
*/
uint32_t tscl_h = tafdel_min + dnf_delay +
(2U * ti2cclk) + ((sclh + 1U) * tpresc);
/* tSCL = tf + tLOW + tr + tHIGH */
uint32_t tscl = tscl_l +
tscl_h + stm32_i2c_charac[i2c_speed].trise +
stm32_i2c_charac[i2c_speed].tfall;
/* get timings with the lowest clock error */
I2C_LOOP_SCLH();
}
}
}
}
return ret;
}
/*
* Macro used to fix the compliance check warning :
* "DEEP_INDENTATION: Too many leading tabs - consider code refactoring
* in the i2c_compute_presc_scldel_sdadel() function below
*/
#define I2C_LOOP_SDADEL(); \
\
if ((tsdadel >= (uint32_t)tsdadel_min) && \
(tsdadel <= (uint32_t)tsdadel_max)) { \
if (presc != prev_presc) { \
i2c_valid_timing[i2c_valid_timing_nbr].presc = presc; \
i2c_valid_timing[i2c_valid_timing_nbr].tscldel = scldel; \
i2c_valid_timing[i2c_valid_timing_nbr].tsdadel = sdadel; \
prev_presc = presc; \
i2c_valid_timing_nbr++; \
\
if (i2c_valid_timing_nbr >= STM32_I2C_VALID_TIMING_NBR) { \
break; \
} \
} \
}
/*
* @brief Compute PRESC, SCLDEL and SDADEL.
* @param clock_src_freq I2C source clock in Hz.
* @param i2c_speed I2C frequency (index).
* @retval None.
*/
void i2c_compute_presc_scldel_sdadel(uint32_t clock_src_freq, uint32_t i2c_speed)
{
uint32_t prev_presc = STM32_I2C_PRESC_MAX;
uint32_t ti2cclk;
int32_t tsdadel_min, tsdadel_max;
int32_t tscldel_min;
uint32_t presc, scldel, sdadel;
uint32_t tafdel_min, tafdel_max;
ti2cclk = (NSEC_PER_SEC + (clock_src_freq / 2U)) / clock_src_freq;
tafdel_min = (STM32_I2C_USE_ANALOG_FILTER == 1U) ?
STM32_I2C_ANALOG_FILTER_DELAY_MIN : 0U;
tafdel_max = (STM32_I2C_USE_ANALOG_FILTER == 1U) ?
STM32_I2C_ANALOG_FILTER_DELAY_MAX : 0U;
/*
* tDNF = DNF x tI2CCLK
* tPRESC = (PRESC+1) x tI2CCLK
* SDADEL >= {tf +tHD;DAT(min) - tAF(min) - tDNF - [3 x tI2CCLK]} / {tPRESC}
* SDADEL <= {tVD;DAT(max) - tr - tAF(max) - tDNF- [4 x tI2CCLK]} / {tPRESC}
*/
tsdadel_min = (int32_t)stm32_i2c_charac[i2c_speed].tfall +
(int32_t)stm32_i2c_charac[i2c_speed].hddat_min -
(int32_t)tafdel_min -
(int32_t)(((int32_t)stm32_i2c_charac[i2c_speed].dnf + 3) *
(int32_t)ti2cclk);
tsdadel_max = (int32_t)stm32_i2c_charac[i2c_speed].vddat_max -
(int32_t)stm32_i2c_charac[i2c_speed].trise -
(int32_t)tafdel_max -
(int32_t)(((int32_t)stm32_i2c_charac[i2c_speed].dnf + 4) *
(int32_t)ti2cclk);
/* {[tr+ tSU;DAT(min)] / [tPRESC]} - 1 <= SCLDEL */
tscldel_min = (int32_t)stm32_i2c_charac[i2c_speed].trise +
(int32_t)stm32_i2c_charac[i2c_speed].sudat_min;
if (tsdadel_min <= 0) {
tsdadel_min = 0;
}
if (tsdadel_max <= 0) {
tsdadel_max = 0;
}
for (presc = 0; presc < STM32_I2C_PRESC_MAX; presc++) {
for (scldel = 0; scldel < STM32_I2C_SCLDEL_MAX; scldel++) {
/* TSCLDEL = (SCLDEL+1) * (PRESC+1) * TI2CCLK */
uint32_t tscldel = (scldel + 1U) * (presc + 1U) * ti2cclk;
if (tscldel >= (uint32_t)tscldel_min) {
for (sdadel = 0; sdadel < STM32_I2C_SDADEL_MAX; sdadel++) {
/* TSDADEL = SDADEL * (PRESC+1) * TI2CCLK */
uint32_t tsdadel = (sdadel * (presc + 1U)) * ti2cclk;
I2C_LOOP_SDADEL();
}
if (i2c_valid_timing_nbr >= STM32_I2C_VALID_TIMING_NBR) {
return;
}
}
}
}
}
int stm32_i2c_configure_timing(const struct device *dev, uint32_t clock)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
uint32_t timing = 0U;
uint32_t idx;
uint32_t speed = 0U;
uint32_t i2c_freq = cfg->bitrate;
/* Reset valid timing count at the beginning of each new computation */
i2c_valid_timing_nbr = 0;
if ((clock != 0U) && (i2c_freq != 0U)) {
for (speed = 0 ; speed <= (uint32_t)STM32_I2C_SPEED_FREQ_FAST_PLUS ; speed++) {
if ((i2c_freq >= stm32_i2c_charac[speed].freq_min) &&
(i2c_freq <= stm32_i2c_charac[speed].freq_max)) {
i2c_compute_presc_scldel_sdadel(clock, speed);
idx = i2c_compute_scll_sclh(clock, speed);
if (idx < STM32_I2C_VALID_TIMING_NBR) {
timing = ((i2c_valid_timing[idx].presc &
0x0FU) << 28) |
((i2c_valid_timing[idx].tscldel & 0x0FU) << 20) |
((i2c_valid_timing[idx].tsdadel & 0x0FU) << 16) |
((i2c_valid_timing[idx].sclh & 0xFFU) << 8) |
((i2c_valid_timing[idx].scll & 0xFFU) << 0);
}
break;
}
}
}
/* Fill the current timing value in data structure at runtime */
data->current_timing.periph_clock = clock;
data->current_timing.i2c_speed = i2c_freq;
data->current_timing.timing_setting = timing;
LL_I2C_SetTiming(i2c, timing);
return 0;
}
#else/* CONFIG_I2C_STM32_V2_TIMING */
int stm32_i2c_configure_timing(const struct device *dev, uint32_t clock)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
uint32_t i2c_hold_time_min, i2c_setup_time_min;
uint32_t i2c_h_min_time, i2c_l_min_time;
uint32_t presc = 1U;
uint32_t timing = 0U;
/* Look for an adequate preset timing value */
for (uint32_t i = 0; i < cfg->n_timings; i++) {
const struct i2c_config_timing *preset = &cfg->timings[i];
uint32_t speed = i2c_map_dt_bitrate(preset->i2c_speed);
if ((I2C_SPEED_GET(speed) == I2C_SPEED_GET(data->dev_config))
&& (preset->periph_clock == clock)) {
/* Found a matching periph clock and i2c speed */
LL_I2C_SetTiming(i2c, preset->timing_setting);
return 0;
}
}
/* No preset timing was provided, let's dynamically configure */
switch (I2C_SPEED_GET(data->dev_config)) {
case I2C_SPEED_STANDARD:
i2c_h_min_time = 4000U;
i2c_l_min_time = 4700U;
i2c_hold_time_min = 500U;
i2c_setup_time_min = 1250U;
break;
case I2C_SPEED_FAST:
i2c_h_min_time = 600U;
i2c_l_min_time = 1300U;
i2c_hold_time_min = 375U;
i2c_setup_time_min = 500U;
break;
default:
LOG_ERR("i2c: speed above \"fast\" requires manual timing configuration, "
"see \"timings\" property of st,stm32-i2c-v2 devicetree binding");
return -EINVAL;
}
/* Calculate period until prescaler matches */
do {
uint32_t t_presc = clock / presc;
uint32_t ns_presc = NSEC_PER_SEC / t_presc;
uint32_t sclh = i2c_h_min_time / ns_presc;
uint32_t scll = i2c_l_min_time / ns_presc;
uint32_t sdadel = i2c_hold_time_min / ns_presc;
uint32_t scldel = i2c_setup_time_min / ns_presc;
if ((sclh - 1) > 255 || (scll - 1) > 255) {
++presc;
continue;
}
if (sdadel > 15 || (scldel - 1) > 15) {
++presc;
continue;
}
timing = __LL_I2C_CONVERT_TIMINGS(presc - 1,
scldel - 1, sdadel, sclh - 1, scll - 1);
break;
} while (presc < 16);
if (presc >= 16U) {
LOG_ERR("I2C:failed to find prescaler value");
return -EINVAL;
}
LOG_DBG("I2C TIMING = 0x%x", timing);
LL_I2C_SetTiming(i2c, timing);
return 0;
}
#endif /* CONFIG_I2C_STM32_V2_TIMING */
int stm32_i2c_transaction(const struct device *dev,
struct i2c_msg msg, uint8_t *next_msg_flags,
uint16_t periph)
{
/*
* Perform a I2C transaction, while taking into account the STM32 I2C V2
* peripheral has a limited maximum chunk size. Take appropriate action
* if the message to send exceeds that limit.
*
* The last chunk of a transmission uses this function's next_msg_flags
* parameter for its backend calls (_write/_read). Any previous chunks
* use a copy of the current message's flags, with the STOP and RESTART
* bits turned off. This will cause the backend to use reload-mode,
* which will make the combination of all chunks to look like one big
* transaction on the wire.
*/
const uint32_t i2c_stm32_maxchunk = 255U;
const uint8_t saved_flags = msg.flags;
uint8_t combine_flags =
saved_flags & ~(I2C_MSG_STOP | I2C_MSG_RESTART);
uint8_t *flagsp = NULL;
uint32_t rest = msg.len;
int ret = 0;
do { /* do ... while to allow zero-length transactions */
if (msg.len > i2c_stm32_maxchunk) {
msg.len = i2c_stm32_maxchunk;
msg.flags &= ~I2C_MSG_STOP;
flagsp = &combine_flags;
} else {
msg.flags = saved_flags;
flagsp = next_msg_flags;
}
if ((msg.flags & I2C_MSG_RW_MASK) == I2C_MSG_WRITE) {
ret = stm32_i2c_msg_write(dev, &msg, flagsp, periph);
} else {
ret = stm32_i2c_msg_read(dev, &msg, flagsp, periph);
}
if (ret < 0) {
break;
}
rest -= msg.len;
msg.buf += msg.len;
msg.len = rest;
} while (rest > 0U);
return ret;
}