zephyr/drivers/display/ssd16xx.c

1135 lines
26 KiB
C

/*
* Copyright (c) 2022 Andreas Sandberg
* Copyright (c) 2018-2020 PHYTEC Messtechnik GmbH
*
* SPDX-License-Identifier: Apache-2.0
*/
#define LOG_LEVEL CONFIG_DISPLAY_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(ssd16xx);
#include <string.h>
#include <zephyr/device.h>
#include <zephyr/drivers/display.h>
#include <zephyr/init.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/display/ssd16xx.h>
#include "ssd16xx_regs.h"
/**
* SSD16xx compatible EPD controller driver.
*/
#define EPD_PANEL_NUMOF_ROWS_PER_PAGE 8
#define SSD16XX_PANEL_FIRST_PAGE 0
#define SSD16XX_PANEL_FIRST_GATE 0
#define SSD16XX_PIXELS_PER_BYTE 8
#define SSD16XX_DEFAULT_TR_VALUE 25U
#define SSD16XX_TR_SCALE_FACTOR 256U
enum ssd16xx_profile_type {
SSD16XX_PROFILE_FULL = 0,
SSD16XX_PROFILE_PARTIAL,
SSD16XX_NUM_PROFILES,
SSD16XX_PROFILE_INVALID = SSD16XX_NUM_PROFILES,
};
struct ssd16xx_quirks {
/* Gates */
uint16_t max_width;
/* Sources */
uint16_t max_height;
/* Width (bits) of integer type representing an x coordinate */
uint8_t pp_width_bits;
/* Width (bits) of integer type representing a y coordinate */
uint8_t pp_height_bits;
/*
* Device specific flags to be included in
* SSD16XX_CMD_UPDATE_CTRL2 for a full refresh.
*/
uint8_t ctrl2_full;
/*
* Device specific flags to be included in
* SSD16XX_CMD_UPDATE_CTRL2 for a partial refresh.
*/
uint8_t ctrl2_partial;
};
struct ssd16xx_data {
bool read_supported;
uint8_t scan_mode;
bool blanking_on;
enum ssd16xx_profile_type profile;
};
struct ssd16xx_dt_array {
uint8_t *data;
uint8_t len;
};
struct ssd16xx_profile {
struct ssd16xx_dt_array lut;
struct ssd16xx_dt_array gdv;
struct ssd16xx_dt_array sdv;
uint8_t vcom;
uint8_t bwf;
uint8_t dummy_line;
uint8_t gate_line_width;
bool override_vcom;
bool override_bwf;
bool override_dummy_line;
bool override_gate_line_width;
};
struct ssd16xx_config {
struct spi_dt_spec bus;
struct gpio_dt_spec dc_gpio;
struct gpio_dt_spec busy_gpio;
struct gpio_dt_spec reset_gpio;
const struct ssd16xx_quirks *quirks;
struct ssd16xx_dt_array softstart;
const struct ssd16xx_profile *profiles[SSD16XX_NUM_PROFILES];
bool orientation;
uint16_t height;
uint16_t width;
uint8_t tssv;
};
static int ssd16xx_set_profile(const struct device *dev,
enum ssd16xx_profile_type type);
static inline void ssd16xx_busy_wait(const struct device *dev)
{
const struct ssd16xx_config *config = dev->config;
int pin = gpio_pin_get_dt(&config->busy_gpio);
while (pin > 0) {
__ASSERT(pin >= 0, "Failed to get pin level");
k_msleep(SSD16XX_BUSY_DELAY);
pin = gpio_pin_get_dt(&config->busy_gpio);
}
}
static inline int ssd16xx_write_cmd(const struct device *dev, uint8_t cmd,
const uint8_t *data, size_t len)
{
const struct ssd16xx_config *config = dev->config;
struct spi_buf buf = {.buf = &cmd, .len = sizeof(cmd)};
struct spi_buf_set buf_set = {.buffers = &buf, .count = 1};
int err = 0;
ssd16xx_busy_wait(dev);
err = gpio_pin_set_dt(&config->dc_gpio, 1);
if (err < 0) {
return err;
}
err = spi_write_dt(&config->bus, &buf_set);
if (err < 0) {
goto spi_out;
}
if (data != NULL) {
buf.buf = (void *)data;
buf.len = len;
err = gpio_pin_set_dt(&config->dc_gpio, 0);
if (err < 0) {
goto spi_out;
}
err = spi_write_dt(&config->bus, &buf_set);
if (err < 0) {
goto spi_out;
}
}
spi_out:
spi_release_dt(&config->bus);
return err;
}
static inline int ssd16xx_write_uint8(const struct device *dev, uint8_t cmd,
uint8_t data)
{
return ssd16xx_write_cmd(dev, cmd, &data, 1);
}
static inline int ssd16xx_read_cmd(const struct device *dev, uint8_t cmd,
uint8_t *data, size_t len)
{
const struct ssd16xx_config *config = dev->config;
const struct ssd16xx_data *dev_data = dev->data;
struct spi_buf buf = {.buf = &cmd, .len = sizeof(cmd)};
struct spi_buf_set buf_set = {.buffers = &buf, .count = 1};
int err = 0;
if (!dev_data->read_supported) {
return -ENOTSUP;
}
ssd16xx_busy_wait(dev);
err = gpio_pin_set_dt(&config->dc_gpio, 1);
if (err < 0) {
return err;
}
err = spi_write_dt(&config->bus, &buf_set);
if (err < 0) {
goto spi_out;
}
if (data != NULL) {
buf.buf = data;
buf.len = len;
err = gpio_pin_set_dt(&config->dc_gpio, 0);
if (err < 0) {
goto spi_out;
}
err = spi_read_dt(&config->bus, &buf_set);
if (err < 0) {
goto spi_out;
}
}
spi_out:
spi_release_dt(&config->bus);
return err;
}
static inline size_t push_x_param(const struct device *dev,
uint8_t *data, uint16_t x)
{
const struct ssd16xx_config *config = dev->config;
if (config->quirks->pp_width_bits == 8) {
data[0] = (uint8_t)x;
return 1;
}
if (config->quirks->pp_width_bits == 16) {
sys_put_le16(sys_cpu_to_le16(x), data);
return 2;
}
LOG_ERR("Unsupported pp_width_bits %u",
config->quirks->pp_width_bits);
return 0;
}
static inline size_t push_y_param(const struct device *dev,
uint8_t *data, uint16_t y)
{
const struct ssd16xx_config *config = dev->config;
if (config->quirks->pp_height_bits == 8) {
data[0] = (uint8_t)y;
return 1;
}
if (config->quirks->pp_height_bits == 16) {
sys_put_le16(sys_cpu_to_le16(y), data);
return 2;
}
LOG_ERR("Unsupported pp_height_bitsa %u",
config->quirks->pp_height_bits);
return 0;
}
static inline int ssd16xx_set_ram_param(const struct device *dev,
uint16_t sx, uint16_t ex,
uint16_t sy, uint16_t ey)
{
int err;
uint8_t tmp[4];
size_t len;
len = push_x_param(dev, tmp, sx);
len += push_x_param(dev, tmp + len, ex);
err = ssd16xx_write_cmd(dev, SSD16XX_CMD_RAM_XPOS_CTRL, tmp, len);
if (err < 0) {
return err;
}
len = push_y_param(dev, tmp, sy);
len += push_y_param(dev, tmp + len, ey);
err = ssd16xx_write_cmd(dev, SSD16XX_CMD_RAM_YPOS_CTRL, tmp, len);
if (err < 0) {
return err;
}
return 0;
}
static inline int ssd16xx_set_ram_ptr(const struct device *dev, uint16_t x,
uint16_t y)
{
int err;
uint8_t tmp[2];
size_t len;
len = push_x_param(dev, tmp, x);
err = ssd16xx_write_cmd(dev, SSD16XX_CMD_RAM_XPOS_CNTR, tmp, len);
if (err < 0) {
return err;
}
len = push_y_param(dev, tmp, y);
return ssd16xx_write_cmd(dev, SSD16XX_CMD_RAM_YPOS_CNTR, tmp, len);
}
static int ssd16xx_activate(const struct device *dev, uint8_t ctrl2)
{
int err;
err = ssd16xx_write_uint8(dev, SSD16XX_CMD_UPDATE_CTRL2, ctrl2);
if (err < 0) {
return err;
}
return ssd16xx_write_cmd(dev, SSD16XX_CMD_MASTER_ACTIVATION, NULL, 0);
}
static int ssd16xx_update_display(const struct device *dev)
{
const struct ssd16xx_config *config = dev->config;
const struct ssd16xx_data *data = dev->data;
const struct ssd16xx_profile *p = config->profiles[data->profile];
const struct ssd16xx_quirks *quirks = config->quirks;
const bool load_lut = !p || p->lut.len == 0;
const bool load_temp = load_lut && config->tssv;
const bool partial = data->profile == SSD16XX_PROFILE_PARTIAL;
const uint8_t update_cmd =
SSD16XX_CTRL2_ENABLE_CLK |
SSD16XX_CTRL2_ENABLE_ANALOG |
(load_lut ? SSD16XX_CTRL2_LOAD_LUT : 0) |
(load_temp ? SSD16XX_CTRL2_LOAD_TEMPERATURE : 0) |
(partial ? quirks->ctrl2_partial : quirks->ctrl2_full) |
SSD16XX_CTRL2_DISABLE_ANALOG |
SSD16XX_CTRL2_DISABLE_CLK;
return ssd16xx_activate(dev, update_cmd);
}
static int ssd16xx_blanking_off(const struct device *dev)
{
struct ssd16xx_data *data = dev->data;
if (data->blanking_on) {
data->blanking_on = false;
return ssd16xx_update_display(dev);
}
return 0;
}
static int ssd16xx_blanking_on(const struct device *dev)
{
struct ssd16xx_data *data = dev->data;
if (!data->blanking_on) {
if (ssd16xx_set_profile(dev, SSD16XX_PROFILE_FULL)) {
return -EIO;
}
}
data->blanking_on = true;
return 0;
}
static int ssd16xx_set_window(const struct device *dev,
const uint16_t x, const uint16_t y,
const struct display_buffer_descriptor *desc)
{
const struct ssd16xx_config *config = dev->config;
const struct ssd16xx_data *data = dev->data;
int err;
uint16_t x_start;
uint16_t x_end;
uint16_t y_start;
uint16_t y_end;
uint16_t panel_h = config->height -
config->height % EPD_PANEL_NUMOF_ROWS_PER_PAGE;
if (desc->pitch < desc->width) {
LOG_ERR("Pitch is smaller than width");
return -EINVAL;
}
if (desc->pitch > desc->width) {
LOG_ERR("Unsupported mode");
return -ENOTSUP;
}
if ((y + desc->height) > panel_h) {
LOG_ERR("Buffer out of bounds (height)");
return -EINVAL;
}
if ((x + desc->width) > config->width) {
LOG_ERR("Buffer out of bounds (width)");
return -EINVAL;
}
if ((desc->height % EPD_PANEL_NUMOF_ROWS_PER_PAGE) != 0U) {
LOG_ERR("Buffer height not multiple of %d",
EPD_PANEL_NUMOF_ROWS_PER_PAGE);
return -EINVAL;
}
if ((y % EPD_PANEL_NUMOF_ROWS_PER_PAGE) != 0U) {
LOG_ERR("Y coordinate not multiple of %d",
EPD_PANEL_NUMOF_ROWS_PER_PAGE);
return -EINVAL;
}
switch (data->scan_mode) {
case SSD16XX_DATA_ENTRY_XIYDY:
x_start = y / SSD16XX_PIXELS_PER_BYTE;
x_end = (y + desc->height - 1) / SSD16XX_PIXELS_PER_BYTE;
y_start = (x + desc->width - 1);
y_end = x;
break;
case SSD16XX_DATA_ENTRY_XDYIY:
x_start = (panel_h - 1 - y) / SSD16XX_PIXELS_PER_BYTE;
x_end = (panel_h - 1 - (y + desc->height - 1)) /
SSD16XX_PIXELS_PER_BYTE;
y_start = x;
y_end = (x + desc->width - 1);
break;
default:
return -EINVAL;
}
err = ssd16xx_write_cmd(dev, SSD16XX_CMD_ENTRY_MODE,
&data->scan_mode, sizeof(data->scan_mode));
if (err < 0) {
return err;
}
err = ssd16xx_set_ram_param(dev, x_start, x_end, y_start, y_end);
if (err < 0) {
return err;
}
err = ssd16xx_set_ram_ptr(dev, x_start, y_start);
if (err < 0) {
return err;
}
return 0;
}
static int ssd16xx_write(const struct device *dev, const uint16_t x,
const uint16_t y,
const struct display_buffer_descriptor *desc,
const void *buf)
{
const struct ssd16xx_config *config = dev->config;
const struct ssd16xx_data *data = dev->data;
const bool have_partial_refresh =
config->profiles[SSD16XX_PROFILE_PARTIAL] != NULL;
const bool partial_refresh = !data->blanking_on && have_partial_refresh;
const size_t buf_len = MIN(desc->buf_size,
desc->height * desc->width / 8);
int err;
if (buf == NULL || buf_len == 0U) {
LOG_ERR("Display buffer is not available");
return -EINVAL;
}
if (partial_refresh) {
/*
* Request the partial profile. This operation becomes
* a no-op if the profile is already active.
*/
err = ssd16xx_set_profile(dev, SSD16XX_PROFILE_PARTIAL);
if (err < 0) {
return -EIO;
}
}
err = ssd16xx_set_window(dev, x, y, desc);
if (err < 0) {
return err;
}
err = ssd16xx_write_cmd(dev, SSD16XX_CMD_WRITE_RAM, (uint8_t *)buf,
buf_len);
if (err < 0) {
return err;
}
if (!data->blanking_on) {
err = ssd16xx_update_display(dev);
if (err < 0) {
return err;
}
}
if (data->blanking_on && have_partial_refresh) {
/*
* We will trigger a full refresh when blanking is
* turned off. The controller won't keep track of the
* old frame buffer, which is needed to perform a
* partial update, when this happens. Maintain the old
* frame buffer manually here to make sure future
* partial updates will work as expected.
*/
err = ssd16xx_write_cmd(dev, SSD16XX_CMD_WRITE_RED_RAM,
(uint8_t *)buf, buf_len);
if (err < 0) {
return err;
}
} else if (partial_refresh) {
/*
* We just performed a partial refresh. After the
* refresh, the controller swaps the black/red buffers
* containing the current and new image. We need to
* perform a second write here to ensure that future
* updates work on an up-to-date framebuffer.
*/
err = ssd16xx_write_cmd(dev, SSD16XX_CMD_WRITE_RAM,
(uint8_t *)buf, buf_len);
if (err < 0) {
return err;
}
}
return 0;
}
int ssd16xx_read_ram(const struct device *dev, enum ssd16xx_ram ram_type,
const uint16_t x, const uint16_t y,
const struct display_buffer_descriptor *desc,
void *buf)
{
const struct ssd16xx_data *data = dev->data;
const size_t buf_len = MIN(desc->buf_size,
desc->height * desc->width / 8);
int err;
uint8_t ram_ctrl;
if (!data->read_supported) {
return -ENOTSUP;
}
switch (ram_type) {
case SSD16XX_RAM_BLACK:
ram_ctrl = SSD16XX_RAM_READ_CTRL_BLACK;
break;
case SSD16XX_RAM_RED:
ram_ctrl = SSD16XX_RAM_READ_CTRL_RED;
break;
default:
return -EINVAL;
}
if (buf == NULL || buf_len == 0U) {
LOG_ERR("Display buffer is not available");
return -EINVAL;
}
err = ssd16xx_set_window(dev, x, y, desc);
if (err < 0) {
return err;
}
err = ssd16xx_write_cmd(dev, SSD16XX_CMD_RAM_READ_CTRL,
&ram_ctrl, sizeof(ram_ctrl));
if (err < 0) {
return err;
}
err = ssd16xx_read_cmd(dev, SSD16XX_CMD_READ_RAM, (uint8_t *)buf,
buf_len);
if (err < 0) {
return err;
}
return 0;
}
static int ssd16xx_read(const struct device *dev,
const uint16_t x, const uint16_t y,
const struct display_buffer_descriptor *desc,
void *buf)
{
return ssd16xx_read_ram(dev, SSD16XX_RAM_BLACK, x, y, desc, buf);
}
static void *ssd16xx_get_framebuffer(const struct device *dev)
{
LOG_ERR("not supported");
return NULL;
}
static int ssd16xx_set_brightness(const struct device *dev,
const uint8_t brightness)
{
LOG_WRN("not supported");
return -ENOTSUP;
}
static int ssd16xx_set_contrast(const struct device *dev, uint8_t contrast)
{
LOG_WRN("not supported");
return -ENOTSUP;
}
static void ssd16xx_get_capabilities(const struct device *dev,
struct display_capabilities *caps)
{
const struct ssd16xx_config *config = dev->config;
memset(caps, 0, sizeof(struct display_capabilities));
caps->x_resolution = config->width;
caps->y_resolution = config->height -
config->height % EPD_PANEL_NUMOF_ROWS_PER_PAGE;
caps->supported_pixel_formats = PIXEL_FORMAT_MONO10;
caps->current_pixel_format = PIXEL_FORMAT_MONO10;
caps->screen_info = SCREEN_INFO_MONO_VTILED |
SCREEN_INFO_MONO_MSB_FIRST |
SCREEN_INFO_EPD;
}
static int ssd16xx_set_orientation(const struct device *dev,
const enum display_orientation
orientation)
{
LOG_ERR("Unsupported");
return -ENOTSUP;
}
static int ssd16xx_set_pixel_format(const struct device *dev,
const enum display_pixel_format pf)
{
if (pf == PIXEL_FORMAT_MONO10) {
return 0;
}
LOG_ERR("not supported");
return -ENOTSUP;
}
static int ssd16xx_clear_cntlr_mem(const struct device *dev, uint8_t ram_cmd)
{
const struct ssd16xx_config *config = dev->config;
uint16_t panel_h = config->height / EPD_PANEL_NUMOF_ROWS_PER_PAGE;
uint16_t last_gate = config->width - 1;
uint8_t clear_page[64];
int err;
/*
* Clear unusable memory area when the resolution of the panel is not
* multiple of an octet.
*/
if (config->height % EPD_PANEL_NUMOF_ROWS_PER_PAGE) {
panel_h += 1;
}
err = ssd16xx_write_uint8(dev, SSD16XX_CMD_ENTRY_MODE,
SSD16XX_DATA_ENTRY_XIYDY);
if (err < 0) {
return err;
}
err = ssd16xx_set_ram_param(dev, SSD16XX_PANEL_FIRST_PAGE,
panel_h - 1, last_gate,
SSD16XX_PANEL_FIRST_GATE);
if (err < 0) {
return err;
}
err = ssd16xx_set_ram_ptr(dev, SSD16XX_PANEL_FIRST_PAGE, last_gate);
if (err < 0) {
return err;
}
memset(clear_page, 0xff, sizeof(clear_page));
for (int h = 0; h < panel_h; h++) {
size_t x = config->width;
while (x) {
size_t l = MIN(x, sizeof(clear_page));
x -= l;
err = ssd16xx_write_cmd(dev, ram_cmd, clear_page, l);
if (err < 0) {
return err;
}
}
}
return 0;
}
static inline int ssd16xx_load_ws_from_otp_tssv(const struct device *dev)
{
const struct ssd16xx_config *config = dev->config;
/*
* Controller has an integrated temperature sensor or external
* temperature sensor is connected to the controller.
*/
LOG_INF("Select and load WS from OTP");
return ssd16xx_write_uint8(dev, SSD16XX_CMD_TSENSOR_SELECTION,
config->tssv);
}
static inline int ssd16xx_load_ws_from_otp(const struct device *dev)
{
int16_t t = (SSD16XX_DEFAULT_TR_VALUE * SSD16XX_TR_SCALE_FACTOR);
uint8_t tmp[2];
int err;
LOG_INF("Load default WS (25 degrees Celsius) from OTP");
err = ssd16xx_activate(dev, SSD16XX_CTRL2_ENABLE_CLK);
if (err < 0) {
return err;
}
/* Load temperature value */
sys_put_be16(t, tmp);
err = ssd16xx_write_cmd(dev, SSD16XX_CMD_TSENS_CTRL, tmp, 2);
if (err < 0) {
return err;
}
err = ssd16xx_activate(dev, SSD16XX_CTRL2_DISABLE_CLK);
if (err < 0) {
return err;
}
return 0;
}
static int ssd16xx_load_lut(const struct device *dev,
const struct ssd16xx_dt_array *lut)
{
const struct ssd16xx_config *config = dev->config;
if (lut && lut->len) {
LOG_DBG("Using user-provided LUT");
return ssd16xx_write_cmd(dev, SSD16XX_CMD_UPDATE_LUT,
lut->data, lut->len);
} else {
if (config->tssv) {
return ssd16xx_load_ws_from_otp_tssv(dev);
} else {
return ssd16xx_load_ws_from_otp(dev);
}
}
}
static int ssd16xx_set_profile(const struct device *dev,
enum ssd16xx_profile_type type)
{
const struct ssd16xx_config *config = dev->config;
struct ssd16xx_data *data = dev->data;
const struct ssd16xx_profile *p;
const uint16_t last_gate = config->width - 1;
uint8_t gdo[3];
size_t gdo_len;
int err = 0;
if (type >= SSD16XX_NUM_PROFILES) {
return -EINVAL;
}
p = config->profiles[type];
/*
* The full profile is the only one that always exists. If it
* hasn't been specified, we use the defaults.
*/
if (!p && type != SSD16XX_PROFILE_FULL) {
return -ENOENT;
}
if (type == data->profile) {
return 0;
}
/*
* Perform a soft reset to make sure registers are reset. This
* will leave the RAM contents intact.
*/
err = ssd16xx_write_cmd(dev, SSD16XX_CMD_SW_RESET, NULL, 0);
if (err < 0) {
return err;
}
gdo_len = push_y_param(dev, gdo, last_gate);
gdo[gdo_len++] = 0U;
err = ssd16xx_write_cmd(dev, SSD16XX_CMD_GDO_CTRL, gdo, gdo_len);
if (err < 0) {
return err;
}
if (config->softstart.len) {
err = ssd16xx_write_cmd(dev, SSD16XX_CMD_SOFTSTART,
config->softstart.data,
config->softstart.len);
if (err < 0) {
return err;
}
}
err = ssd16xx_load_lut(dev, p ? &p->lut : NULL);
if (err < 0) {
return err;
}
if (p && p->override_dummy_line) {
err = ssd16xx_write_uint8(dev, SSD16XX_CMD_DUMMY_LINE,
p->dummy_line);
if (err < 0) {
return err;
}
}
if (p && p->override_gate_line_width) {
err = ssd16xx_write_uint8(dev, SSD16XX_CMD_GATE_LINE_WIDTH,
p->override_gate_line_width);
if (err < 0) {
return err;
}
}
if (p && p->gdv.len) {
LOG_DBG("Setting GDV");
err = ssd16xx_write_cmd(dev, SSD16XX_CMD_GDV_CTRL,
p->gdv.data, p->gdv.len);
if (err < 0) {
return err;
}
}
if (p && p->sdv.len) {
LOG_DBG("Setting SDV");
err = ssd16xx_write_cmd(dev, SSD16XX_CMD_SDV_CTRL,
p->sdv.data, p->sdv.len);
if (err < 0) {
return err;
}
}
if (p && p->override_vcom) {
LOG_DBG("Setting VCOM");
err = ssd16xx_write_cmd(dev, SSD16XX_CMD_VCOM_VOLTAGE,
&p->vcom, 1);
if (err < 0) {
return err;
}
}
if (p && p->override_bwf) {
LOG_DBG("Setting BWF");
err = ssd16xx_write_cmd(dev, SSD16XX_CMD_BWF_CTRL,
&p->bwf, 1);
if (err < 0) {
return err;
}
}
data->profile = type;
return 0;
}
static int ssd16xx_controller_init(const struct device *dev)
{
const struct ssd16xx_config *config = dev->config;
struct ssd16xx_data *data = dev->data;
int err;
LOG_DBG("");
data->blanking_on = false;
data->profile = SSD16XX_PROFILE_INVALID;
err = gpio_pin_set_dt(&config->reset_gpio, 1);
if (err < 0) {
return err;
}
k_msleep(SSD16XX_RESET_DELAY);
err = gpio_pin_set_dt(&config->reset_gpio, 0);
if (err < 0) {
return err;
}
k_msleep(SSD16XX_RESET_DELAY);
if (config->orientation == 1) {
data->scan_mode = SSD16XX_DATA_ENTRY_XIYDY;
} else {
data->scan_mode = SSD16XX_DATA_ENTRY_XDYIY;
}
err = ssd16xx_set_profile(dev, SSD16XX_PROFILE_FULL);
if (err < 0) {
return err;
}
err = ssd16xx_clear_cntlr_mem(dev, SSD16XX_CMD_WRITE_RAM);
if (err < 0) {
return err;
}
err = ssd16xx_clear_cntlr_mem(dev, SSD16XX_CMD_WRITE_RED_RAM);
if (err < 0) {
return err;
}
err = ssd16xx_update_display(dev);
if (err < 0) {
return err;
}
return 0;
}
static int ssd16xx_init(const struct device *dev)
{
const struct ssd16xx_config *config = dev->config;
struct ssd16xx_data *data = dev->data;
int err;
LOG_DBG("");
if (!spi_is_ready_dt(&config->bus)) {
LOG_ERR("SPI bus %s not ready", config->bus.bus->name);
return -ENODEV;
}
data->read_supported =
(config->bus.config.operation & SPI_HALF_DUPLEX) != 0;
if (!device_is_ready(config->reset_gpio.port)) {
LOG_ERR("Reset GPIO device not ready");
return -ENODEV;
}
err = gpio_pin_configure_dt(&config->reset_gpio, GPIO_OUTPUT_INACTIVE);
if (err < 0) {
LOG_ERR("Failed to configure reset GPIO");
return err;
}
if (!device_is_ready(config->dc_gpio.port)) {
LOG_ERR("DC GPIO device not ready");
return -ENODEV;
}
err = gpio_pin_configure_dt(&config->dc_gpio, GPIO_OUTPUT_INACTIVE);
if (err < 0) {
LOG_ERR("Failed to configure DC GPIO");
return err;
}
if (!device_is_ready(config->busy_gpio.port)) {
LOG_ERR("Busy GPIO device not ready");
return -ENODEV;
}
err = gpio_pin_configure_dt(&config->busy_gpio, GPIO_INPUT);
if (err < 0) {
LOG_ERR("Failed to configure busy GPIO");
return err;
}
if (config->width > config->quirks->max_width ||
config->height > config->quirks->max_height) {
LOG_ERR("Display size out of range.");
return -EINVAL;
}
return ssd16xx_controller_init(dev);
}
static struct display_driver_api ssd16xx_driver_api = {
.blanking_on = ssd16xx_blanking_on,
.blanking_off = ssd16xx_blanking_off,
.write = ssd16xx_write,
.read = ssd16xx_read,
.get_framebuffer = ssd16xx_get_framebuffer,
.set_brightness = ssd16xx_set_brightness,
.set_contrast = ssd16xx_set_contrast,
.get_capabilities = ssd16xx_get_capabilities,
.set_pixel_format = ssd16xx_set_pixel_format,
.set_orientation = ssd16xx_set_orientation,
};
#if DT_HAS_COMPAT_STATUS_OKAY(solomon_ssd1608)
static struct ssd16xx_quirks quirks_solomon_ssd1608 = {
.max_width = 320,
.max_height = 240,
.pp_width_bits = 16,
.pp_height_bits = 16,
.ctrl2_full = SSD16XX_GEN1_CTRL2_TO_PATTERN,
.ctrl2_partial = SSD16XX_GEN1_CTRL2_TO_PATTERN,
};
#endif
#if DT_HAS_COMPAT_STATUS_OKAY(solomon_ssd1673)
static struct ssd16xx_quirks quirks_solomon_ssd1673 = {
.max_width = 250,
.max_height = 150,
.pp_width_bits = 8,
.pp_height_bits = 8,
.ctrl2_full = SSD16XX_GEN1_CTRL2_TO_PATTERN,
.ctrl2_partial = SSD16XX_GEN1_CTRL2_TO_PATTERN,
};
#endif
#if DT_HAS_COMPAT_STATUS_OKAY(solomon_ssd1675a)
static struct ssd16xx_quirks quirks_solomon_ssd1675a = {
.max_width = 296,
.max_height = 160,
.pp_width_bits = 8,
.pp_height_bits = 16,
.ctrl2_full = SSD16XX_GEN1_CTRL2_TO_PATTERN,
.ctrl2_partial = SSD16XX_GEN1_CTRL2_TO_PATTERN,
};
#endif
#if DT_HAS_COMPAT_STATUS_OKAY(solomon_ssd1680)
static const struct ssd16xx_quirks quirks_solomon_ssd1680 = {
.max_width = 296,
.max_height = 176,
.pp_width_bits = 8,
.pp_height_bits = 16,
.ctrl2_full = SSD16XX_GEN2_CTRL2_DISPLAY,
.ctrl2_partial = SSD16XX_GEN2_CTRL2_DISPLAY | SSD16XX_GEN2_CTRL2_MODE2,
};
#endif
#if DT_HAS_COMPAT_STATUS_OKAY(solomon_ssd1681)
static struct ssd16xx_quirks quirks_solomon_ssd1681 = {
.max_width = 200,
.max_height = 200,
.pp_width_bits = 8,
.pp_height_bits = 16,
.ctrl2_full = SSD16XX_GEN2_CTRL2_DISPLAY,
.ctrl2_partial = SSD16XX_GEN2_CTRL2_DISPLAY | SSD16XX_GEN2_CTRL2_MODE2,
};
#endif
#define SOFTSTART_ASSIGN(n) \
.softstart = { \
.data = softstart_##n, \
.len = sizeof(softstart_##n), \
},
#define SSD16XX_MAKE_ARRAY_OPT(n, p) \
static uint8_t data_ ## n ## _ ## p[] = DT_PROP_OR(n, p, {})
#define SSD16XX_ASSIGN_ARRAY(n, p) \
{ \
.data = data_ ## n ## _ ## p, \
.len = sizeof(data_ ## n ## _ ## p), \
}
#define SSD16XX_PROFILE(n) \
SSD16XX_MAKE_ARRAY_OPT(n, lut); \
SSD16XX_MAKE_ARRAY_OPT(n, gdv); \
SSD16XX_MAKE_ARRAY_OPT(n, sdv); \
\
static const struct ssd16xx_profile ssd16xx_profile_ ## n = { \
.lut = SSD16XX_ASSIGN_ARRAY(n, lut), \
.gdv = SSD16XX_ASSIGN_ARRAY(n, gdv), \
.sdv = SSD16XX_ASSIGN_ARRAY(n, sdv), \
.vcom = DT_PROP_OR(n, vcom, 0), \
.override_vcom = DT_NODE_HAS_PROP(n, vcom), \
.bwf = DT_PROP_OR(n, border_waveform, 0), \
.override_bwf = DT_NODE_HAS_PROP(n, border_waveform), \
.dummy_line = DT_PROP_OR(n, dummy_line, 0), \
.override_dummy_line = DT_NODE_HAS_PROP(n, dummy_line), \
.gate_line_width = DT_PROP_OR(n, gate_line_width, 0), \
.override_gate_line_width = DT_NODE_HAS_PROP( \
n, gate_line_width), \
};
#define _SSD16XX_PROFILE_PTR(n) &ssd16xx_profile_ ## n
#define SSD16XX_PROFILE_PTR(n) \
COND_CODE_1(DT_NODE_EXISTS(n), \
(_SSD16XX_PROFILE_PTR(n)), \
NULL)
#define SSD16XX_DEFINE(n, quirks_ptr) \
SSD16XX_MAKE_ARRAY_OPT(n, softstart); \
\
DT_FOREACH_CHILD(n, SSD16XX_PROFILE); \
\
static const struct ssd16xx_config ssd16xx_cfg_ ## n = { \
.bus = SPI_DT_SPEC_GET(n, \
SPI_OP_MODE_MASTER | SPI_WORD_SET(8) | \
SPI_HOLD_ON_CS | SPI_LOCK_ON, \
0), \
.reset_gpio = GPIO_DT_SPEC_GET(n, reset_gpios), \
.dc_gpio = GPIO_DT_SPEC_GET(n, dc_gpios), \
.busy_gpio = GPIO_DT_SPEC_GET(n, busy_gpios), \
.quirks = quirks_ptr, \
.height = DT_PROP(n, height), \
.width = DT_PROP(n, width), \
.orientation = DT_PROP(n, orientation_flipped), \
.tssv = DT_PROP_OR(n, tssv, 0), \
.softstart = SSD16XX_ASSIGN_ARRAY(n, softstart), \
.profiles = { \
[SSD16XX_PROFILE_FULL] = \
SSD16XX_PROFILE_PTR(DT_CHILD(n, full)), \
[SSD16XX_PROFILE_PARTIAL] = \
SSD16XX_PROFILE_PTR(DT_CHILD(n, partial)),\
}, \
}; \
\
static struct ssd16xx_data ssd16xx_data_ ## n; \
\
DEVICE_DT_DEFINE(n, \
ssd16xx_init, NULL, \
&ssd16xx_data_ ## n, \
&ssd16xx_cfg_ ## n, \
POST_KERNEL, \
CONFIG_DISPLAY_INIT_PRIORITY, \
&ssd16xx_driver_api)
DT_FOREACH_STATUS_OKAY_VARGS(solomon_ssd1608, SSD16XX_DEFINE,
&quirks_solomon_ssd1608);
DT_FOREACH_STATUS_OKAY_VARGS(solomon_ssd1673, SSD16XX_DEFINE,
&quirks_solomon_ssd1673);
DT_FOREACH_STATUS_OKAY_VARGS(solomon_ssd1675a, SSD16XX_DEFINE,
&quirks_solomon_ssd1675a);
DT_FOREACH_STATUS_OKAY_VARGS(solomon_ssd1680, SSD16XX_DEFINE,
&quirks_solomon_ssd1680);
DT_FOREACH_STATUS_OKAY_VARGS(solomon_ssd1681, SSD16XX_DEFINE,
&quirks_solomon_ssd1681);