313 lines
8.7 KiB
C
313 lines
8.7 KiB
C
/* nanokernel initialization module */
|
|
|
|
/*
|
|
* Copyright (c) 2010-2014 Wind River Systems, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1) Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
*
|
|
* 2) Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3) Neither the name of Wind River Systems nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
DESCRIPTION
|
|
This module contains routines that are used to initialize the nanokernel.
|
|
*/
|
|
|
|
#include <offsets.h>
|
|
#include <nanokernel.h>
|
|
#include <misc/printk.h>
|
|
#include <drivers/rand32.h>
|
|
#include <sections.h>
|
|
#include <toolchain.h>
|
|
#include <nano_private.h>
|
|
#include <device.h>
|
|
#include <init.h>
|
|
|
|
/* kernel build timestamp items */
|
|
|
|
#define BUILD_TIMESTAMP "BUILD: " __DATE__ " " __TIME__
|
|
|
|
#ifdef CONFIG_BUILD_TIMESTAMP
|
|
const char * const build_timestamp = BUILD_TIMESTAMP;
|
|
#endif
|
|
|
|
/* boot banner items */
|
|
|
|
#define BOOT_BANNER "****** BOOTING ZEPHYR OS ******"
|
|
|
|
#if !defined(CONFIG_BOOT_BANNER)
|
|
#define PRINT_BOOT_BANNER() do { } while (0)
|
|
#elif !defined(CONFIG_BUILD_TIMESTAMP)
|
|
#define PRINT_BOOT_BANNER() printk(BOOT_BANNER "\n")
|
|
#else
|
|
#define PRINT_BOOT_BANNER() printk(BOOT_BANNER " %s\n", build_timestamp)
|
|
#endif
|
|
|
|
/* boot time measurement items */
|
|
|
|
#ifdef CONFIG_BOOT_TIME_MEASUREMENT
|
|
uint64_t __noinit __start_tsc; /* timestamp when kernel starts */
|
|
uint64_t __noinit __main_tsc; /* timestamp when main task starts */
|
|
uint64_t __noinit __idle_tsc; /* timestamp when CPU goes idle */
|
|
#endif
|
|
|
|
/* random number generator items */
|
|
#if defined(CONFIG_TEST_RANDOM_GENERATOR) || \
|
|
defined(CONFIG_CUSTOM_RANDOM_GENERATOR)
|
|
#define RAND32_INIT() sys_rand32_init()
|
|
#else
|
|
#define RAND32_INIT()
|
|
#endif
|
|
|
|
/* stack space for the background (or idle) task */
|
|
|
|
char __noinit __stack main_task_stack[CONFIG_MAIN_STACK_SIZE];
|
|
|
|
/*
|
|
* storage space for the interrupt stack
|
|
*
|
|
* Note: This area is used as the system stack during nanokernel initialization,
|
|
* since the nanokernel hasn't yet set up its own stack areas. The dual
|
|
* purposing of this area is safe since interrupts are disabled until the
|
|
* nanokernel context switches to the background (or idle) task.
|
|
*/
|
|
|
|
#ifndef CONFIG_NO_ISRS
|
|
char __noinit _interrupt_stack[CONFIG_ISR_STACK_SIZE];
|
|
#endif
|
|
|
|
/* constructor initialization */
|
|
|
|
extern void _Ctors(void);
|
|
|
|
#ifdef CONFIG_NANO_TIMEOUTS
|
|
#include <misc/dlist.h>
|
|
#define initialize_nano_timeouts() sys_dlist_init(&_nanokernel.timeout_q)
|
|
#else
|
|
#define initialize_nano_timeouts() do { } while ((0))
|
|
#endif
|
|
|
|
#ifdef CONFIG_NANOKERNEL
|
|
/**
|
|
*
|
|
* @brief Mainline for nanokernel's background task
|
|
*
|
|
* This routine completes kernel initialization by invoking the remaining
|
|
* init functions, then invokes application's main() routine.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
|
|
static void _main(void)
|
|
{
|
|
_sys_device_do_config_level(NANO_EARLY);
|
|
_sys_device_do_config_level(NANO_LATE);
|
|
_sys_device_do_config_level(APP_EARLY);
|
|
_sys_device_do_config_level(APP_EARLY);
|
|
|
|
extern void main(void);
|
|
main();
|
|
}
|
|
#else
|
|
/* microkernel has its own implementation of _main() */
|
|
|
|
extern void _main(void);
|
|
#endif
|
|
|
|
/**
|
|
*
|
|
* @brief Initializes nanokernel data structures
|
|
*
|
|
* This routine initializes various nanokernel data structures, including
|
|
* the background (or idle) task and any architecture-specific initialization.
|
|
*
|
|
* Note that all fields of "_nanokernel" are set to zero on entry, which may
|
|
* be all the initialization many of them require.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
|
|
static void nano_init(struct tcs *dummyOutContext)
|
|
{
|
|
/*
|
|
* Initialize the current execution thread to permit a level of debugging
|
|
* output if an exception should happen during nanokernel initialization.
|
|
* However, don't waste effort initializing the fields of the dummy thread
|
|
* beyond those needed to identify it as a dummy thread.
|
|
*/
|
|
|
|
_nanokernel.current = dummyOutContext;
|
|
|
|
/*
|
|
* Do not insert dummy execution context in the list of fibers, so that it
|
|
* does not get scheduled back in once context-switched out.
|
|
*/
|
|
dummyOutContext->link = (struct tcs *)NULL;
|
|
|
|
dummyOutContext->flags = FIBER | ESSENTIAL;
|
|
dummyOutContext->prio = 0;
|
|
|
|
|
|
#ifndef CONFIG_NO_ISRS
|
|
/*
|
|
* The interrupt library needs to be initialized early since a series of
|
|
* handlers are installed into the interrupt table to catch spurious
|
|
* interrupts. This must be performed before other nanokernel subsystems
|
|
* install bonafide handlers, or before hardware device drivers are
|
|
* initialized.
|
|
*/
|
|
|
|
_IntLibInit();
|
|
#endif
|
|
|
|
/*
|
|
* Initialize the thread control block (TCS) for the main task (either
|
|
* background or idle task). The entry point for this thread is '_main'.
|
|
*/
|
|
|
|
_nanokernel.task = (struct tcs *) main_task_stack;
|
|
|
|
_new_thread(main_task_stack, /* pStackMem */
|
|
CONFIG_MAIN_STACK_SIZE, /* stackSize */
|
|
(_thread_entry_t)_main, /* pEntry */
|
|
(_thread_arg_t)0, /* parameter1 */
|
|
(_thread_arg_t)0, /* parameter2 */
|
|
(_thread_arg_t)0, /* parameter3 */
|
|
-1, /* priority */
|
|
0 /* options */
|
|
);
|
|
|
|
/* indicate that failure of this task may be fatal to the entire system */
|
|
|
|
_nanokernel.task->flags |= ESSENTIAL;
|
|
|
|
initialize_nano_timeouts();
|
|
|
|
/* perform any architecture-specific initialization */
|
|
|
|
nanoArchInit();
|
|
}
|
|
|
|
#ifdef CONFIG_STACK_CANARIES
|
|
/**
|
|
*
|
|
* @brief Initialize the kernel's stack canary
|
|
*
|
|
* This macro initializes the kernel's stack canary global variable,
|
|
* __stack_chk_guard, with a random value.
|
|
*
|
|
* INTERNAL
|
|
* Depending upon the compiler, modifying __stack_chk_guard directly at runtime
|
|
* may generate a build error. In-line assembly is used as a workaround.
|
|
*/
|
|
|
|
extern void *__stack_chk_guard;
|
|
|
|
#if defined(CONFIG_X86_32)
|
|
#define _MOVE_INSTR "movl "
|
|
#elif defined(CONFIG_ARM)
|
|
#define _MOVE_INSTR "str "
|
|
#else
|
|
#error "Unknown Architecture type"
|
|
#endif /* CONFIG_X86_32 */
|
|
|
|
#define STACK_CANARY_INIT() \
|
|
do { \
|
|
register void *tmp; \
|
|
tmp = (void *)sys_rand32_get(); \
|
|
__asm__ volatile(_MOVE_INSTR "%1, %0;\n\t" \
|
|
: "=m"(__stack_chk_guard) \
|
|
: "r"(tmp)); \
|
|
} while (0)
|
|
|
|
#else /* !CONFIG_STACK_CANARIES */
|
|
#define STACK_CANARY_INIT()
|
|
#endif /* CONFIG_STACK_CANARIES */
|
|
|
|
/**
|
|
*
|
|
* @brief Initialize nanokernel
|
|
*
|
|
* This routine is invoked when the system is ready to run C code. The
|
|
* processor must be running in 32-bit mode, and the BSS must have been
|
|
* cleared/zeroed.
|
|
*
|
|
* @return Does not return
|
|
*/
|
|
|
|
FUNC_NORETURN void _Cstart(void)
|
|
{
|
|
/* floating point operations are NOT performed during nanokernel init */
|
|
|
|
char dummyTCS[__tTCS_NOFLOAT_SIZEOF];
|
|
|
|
/*
|
|
* Initialize nanokernel data structures. This step includes
|
|
* initializing the interrupt subsystem, which must be performed
|
|
* before the hardware initialization phase.
|
|
*/
|
|
|
|
nano_init((struct tcs *)&dummyTCS);
|
|
|
|
/* perform basic hardware initialization */
|
|
|
|
_sys_device_do_config_level(PRE_KERNEL_CORE);
|
|
_sys_device_do_config_level(PRE_KERNEL_EARLY);
|
|
_sys_device_do_config_level(PRE_KERNEL_LATE);
|
|
|
|
/*
|
|
* Initialize random number generator
|
|
* As a platform may implement it in hardware, it has to be
|
|
* initialized after rest of hardware initialization and
|
|
* before stack canaries that use it
|
|
*/
|
|
|
|
RAND32_INIT();
|
|
|
|
/* initialize stack canaries */
|
|
|
|
STACK_CANARY_INIT();
|
|
|
|
/* invoke C++ constructors */
|
|
|
|
_Ctors();
|
|
|
|
/* display boot banner */
|
|
|
|
PRINT_BOOT_BANNER();
|
|
|
|
/* context switch to main task (entry function is _main()) */
|
|
|
|
_nano_fiber_swap();
|
|
|
|
/*
|
|
* Compiler can't tell that the above routines won't return and issues
|
|
* a warning unless we explicitly tell it that control never gets this
|
|
* far.
|
|
*/
|
|
|
|
CODE_UNREACHABLE;
|
|
}
|