283 lines
7.0 KiB
ArmAsm
283 lines
7.0 KiB
ArmAsm
/*
|
|
* Copyright (c) 2014 Wind River Systems, Inc.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @brief Handling of transitions to-and-from fast IRQs (FIRQ)
|
|
*
|
|
* This module implements the code for handling entry to and exit from Fast IRQs.
|
|
*
|
|
* See isr_wrapper.S for details.
|
|
*/
|
|
|
|
#define _ASMLANGUAGE
|
|
|
|
#include <nano_private.h>
|
|
#include <offsets.h>
|
|
#include <toolchain.h>
|
|
#include <arch/cpu.h>
|
|
#include "swap_macros.h"
|
|
|
|
GTEXT(_firq_enter)
|
|
GTEXT(_firq_exit)
|
|
GTEXT(_firq_stack_setup)
|
|
GDATA(_firq_stack)
|
|
|
|
SECTION_VAR(NOINIT, _firq_stack)
|
|
.space CONFIG_FIRQ_STACK_SIZE
|
|
|
|
/**
|
|
*
|
|
* @brief Work to be done before handing control to a FIRQ ISR
|
|
*
|
|
* The processor switches to a second register bank so registers from the
|
|
* current bank do not have to be preserved yet. The only issue is the LP_START/
|
|
* LP_COUNT/LP_END registers, which are not banked.
|
|
*
|
|
* If all FIRQ ISRs are programmed such that there are no use of the LP
|
|
* registers (ie. no LPcc instruction), and CONFIG_ARC_STACK_CHECKING is
|
|
* not set, then the kernel can be configured to remove the use of _firq_enter().
|
|
*
|
|
* When entering a FIRQ, interrupts might as well be locked: the processor is
|
|
* running at its highest priority, and cannot be preempted by anything.
|
|
*
|
|
* Assumption by _isr_demux: r3 is untouched by _firq_enter.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
|
|
SECTION_FUNC(TEXT, _firq_enter)
|
|
|
|
#ifdef CONFIG_ARC_STACK_CHECKING
|
|
/* disable stack checking */
|
|
lr r2, [_ARC_V2_STATUS32]
|
|
bclr r2, r2, _ARC_V2_STATUS32_SC_BIT
|
|
kflag r2
|
|
#endif
|
|
|
|
#ifndef CONFIG_FIRQ_NO_LPCC
|
|
/*
|
|
* Unlike the rest of context switching code, r2 is loaded with something
|
|
* else than 'current' in this routine: this is to preserve r3 so that it
|
|
* does not have to be fetched again in _isr_demux.
|
|
*/
|
|
|
|
/* save LP_START/LP_COUNT/LP_END variables */
|
|
mov_s r1, _nanokernel
|
|
|
|
st lp_count, [r1, __tNANO_firq_regs_OFFSET + __tFirqRegs_lp_count_OFFSET]
|
|
|
|
lr r2, [_ARC_V2_LP_START]
|
|
st r2, [r1, __tNANO_firq_regs_OFFSET + __tFirqRegs_lp_start_OFFSET]
|
|
lr r2, [_ARC_V2_LP_END]
|
|
st r2, [r1, __tNANO_firq_regs_OFFSET + __tFirqRegs_lp_end_OFFSET]
|
|
#endif
|
|
|
|
j @_isr_demux
|
|
|
|
/**
|
|
*
|
|
* @brief Work to be done exiting a FIRQ
|
|
*
|
|
* @return N/A
|
|
*/
|
|
|
|
SECTION_FUNC(TEXT, _firq_exit)
|
|
|
|
mov_s r1, _nanokernel
|
|
ld_s r2, [r1, __tNANO_current_OFFSET]
|
|
|
|
#ifndef CONFIG_FIRQ_NO_LPCC
|
|
|
|
/* assumption: r1 contains _nanokernel, r2 contains the current thread */
|
|
|
|
/* restore LP_START/LP_COUNT/LP_END variables */
|
|
|
|
/* cannot load lp_count from memory */
|
|
ld r3, [r1, __tNANO_firq_regs_OFFSET + __tFirqRegs_lp_count_OFFSET]
|
|
mov lp_count, r3
|
|
|
|
ld r3, [r1, __tNANO_firq_regs_OFFSET + __tFirqRegs_lp_start_OFFSET]
|
|
sr r3, [_ARC_V2_LP_START]
|
|
ld r3, [r1, __tNANO_firq_regs_OFFSET + __tFirqRegs_lp_end_OFFSET]
|
|
sr r3, [_ARC_V2_LP_END]
|
|
|
|
/* exiting here: r1/r2 unchanged, r0/r3 destroyed */
|
|
#endif
|
|
|
|
#if CONFIG_NUM_IRQ_PRIO_LEVELS > 1
|
|
/* check if we're a nested interrupt: if so, let the interrupted interrupt
|
|
* handle the reschedule */
|
|
|
|
lr r3, [_ARC_V2_AUX_IRQ_ACT]
|
|
|
|
/* the OS on ARCv2 always runs in kernel mode, so assume bit31 [U] in
|
|
* AUX_IRQ_ACT is always 0: if the contents of AUX_IRQ_ACT is not 1, it
|
|
* means that another bit is set so an interrupt was interrupted.
|
|
*/
|
|
|
|
breq.nd r3, 1, _check_if_current_is_the_task
|
|
|
|
rtie
|
|
|
|
#endif
|
|
|
|
.balign 4
|
|
_check_if_current_is_the_task:
|
|
|
|
ld r0, [r2, __tTCS_flags_OFFSET]
|
|
and.f r0, r0, PREEMPTIBLE
|
|
bnz.nd _check_if_a_fiber_is_ready
|
|
rtie
|
|
|
|
.balign 4
|
|
_check_if_a_fiber_is_ready:
|
|
ld r0, [r1, __tNANO_fiber_OFFSET] /* incoming fiber in r0 */
|
|
brne.nd r0, 0, _firq_reschedule
|
|
rtie
|
|
|
|
.balign 4
|
|
_firq_reschedule:
|
|
|
|
/*
|
|
* We know there is no interrupted interrupt of lower priority at this
|
|
* point, so when switching back to register bank 0, it will contain the
|
|
* registers from the interrupted thread.
|
|
*/
|
|
|
|
/* chose register bank #0 */
|
|
lr r0, [_ARC_V2_STATUS32]
|
|
and r0, r0, ~_ARC_V2_STATUS32_RB(7)
|
|
kflag r0
|
|
|
|
/* we're back on the outgoing thread's stack */
|
|
_create_irq_stack_frame
|
|
|
|
/*
|
|
* In a FIRQ, STATUS32 of the outgoing thread is in STATUS32_P0 and the
|
|
* PC in ILINK: save them in status32/pc respectively.
|
|
*/
|
|
|
|
lr r0, [_ARC_V2_STATUS32_P0]
|
|
st_s r0, [sp, __tISF_status32_OFFSET]
|
|
|
|
st ilink, [sp, __tISF_pc_OFFSET] /* ilink into pc */
|
|
|
|
mov_s r1, _nanokernel
|
|
ld r2, [r1, __tNANO_current_OFFSET]
|
|
|
|
_save_callee_saved_regs
|
|
|
|
st _CAUSE_FIRQ, [r2, __tTCS_relinquish_cause_OFFSET]
|
|
|
|
ld r2, [r1, __tNANO_fiber_OFFSET]
|
|
|
|
st r2, [r1, __tNANO_current_OFFSET]
|
|
ld r3, [r2, __tTCS_link_OFFSET]
|
|
st r3, [r1, __tNANO_fiber_OFFSET]
|
|
|
|
#ifdef CONFIG_ARC_STACK_CHECKING
|
|
/* Use stack top and down registers from restored context */
|
|
add r3, r2, __tTCS_NOFLOAT_SIZEOF
|
|
sr r3, [_ARC_V2_KSTACK_TOP]
|
|
ld r3, [r2, __tTCS_stack_top_OFFSET]
|
|
sr r3, [_ARC_V2_KSTACK_BASE]
|
|
#endif
|
|
/*
|
|
* _load_callee_saved_regs expects incoming thread in r2.
|
|
* _load_callee_saved_regs restores the stack pointer.
|
|
*/
|
|
_load_callee_saved_regs
|
|
|
|
ld r3, [r2, __tTCS_relinquish_cause_OFFSET]
|
|
|
|
breq.nd r3, _CAUSE_RIRQ, _firq_return_from_rirq
|
|
nop
|
|
breq.nd r3, _CAUSE_FIRQ, _firq_return_from_firq
|
|
nop
|
|
|
|
/* fall through */
|
|
|
|
.balign 4
|
|
_firq_return_from_coop:
|
|
|
|
ld r3, [r2, __tTCS_intlock_key_OFFSET]
|
|
st 0, [r2, __tTCS_intlock_key_OFFSET]
|
|
|
|
/* pc into ilink */
|
|
pop_s r0
|
|
mov ilink, r0
|
|
|
|
pop_s r0 /* status32 into r0 */
|
|
/*
|
|
* There are only two interrupt lock states: locked and unlocked. When
|
|
* entering _Swap(), they are always locked, so the IE bit is unset in
|
|
* status32. If the incoming thread had them locked recursively, it means
|
|
* that the IE bit should stay unset. The only time the bit has to change
|
|
* is if they were not locked recursively.
|
|
*/
|
|
and.f r3, r3, (1 << 4)
|
|
or.nz r0, r0, _ARC_V2_STATUS32_IE
|
|
sr r0, [_ARC_V2_STATUS32_P0]
|
|
|
|
ld r0, [r2, __tTCS_return_value_OFFSET]
|
|
rtie
|
|
|
|
.balign 4
|
|
_firq_return_from_rirq:
|
|
_firq_return_from_firq:
|
|
|
|
_pop_irq_stack_frame
|
|
|
|
ld ilink, [sp, -4] /* status32 into ilink */
|
|
sr ilink, [_ARC_V2_STATUS32_P0]
|
|
ld ilink, [sp, -8] /* pc into ilink */
|
|
|
|
/* fall through to rtie instruction */
|
|
|
|
.balign 4
|
|
_firq_no_reschedule:
|
|
|
|
/* LP registers are already restored, just switch back to bank 0 */
|
|
rtie
|
|
|
|
/**
|
|
*
|
|
* @brief Install the FIRQ stack in register bank 1
|
|
*
|
|
* @return N/A
|
|
*/
|
|
|
|
SECTION_FUNC(TEXT, _firq_stack_setup)
|
|
|
|
lr r0, [_ARC_V2_STATUS32]
|
|
and r0, r0, ~_ARC_V2_STATUS32_RB(7)
|
|
or r0, r0, _ARC_V2_STATUS32_RB(1)
|
|
kflag r0
|
|
|
|
mov sp, _firq_stack
|
|
add sp, sp, CONFIG_FIRQ_STACK_SIZE
|
|
|
|
/*
|
|
* We have to reload r0 here, because it is bank1 r0 which contains
|
|
* garbage, not bank0 r0 containing the previous value of status32.
|
|
*/
|
|
lr r0, [_ARC_V2_STATUS32]
|
|
and r0, r0, ~_ARC_V2_STATUS32_RB(7)
|
|
kflag r0
|
|
|
|
j_s.nd [blink]
|