zephyr/lib/posix/pthread_cond.c

221 lines
5.1 KiB
C

/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <ksched.h>
#include <zephyr/wait_q.h>
#include <zephyr/posix/pthread.h>
#include <zephyr/sys/bitarray.h>
#include "posix_internal.h"
extern struct k_spinlock z_pthread_spinlock;
int64_t timespec_to_timeoutms(const struct timespec *abstime);
static struct posix_cond posix_cond_pool[CONFIG_MAX_PTHREAD_COND_COUNT];
SYS_BITARRAY_DEFINE_STATIC(posix_cond_bitarray, CONFIG_MAX_PTHREAD_COND_COUNT);
/*
* We reserve the MSB to mark a pthread_cond_t as initialized (from the
* perspective of the application). With a linear space, this means that
* the theoretical pthread_cond_t range is [0,2147483647].
*/
BUILD_ASSERT(CONFIG_MAX_PTHREAD_COND_COUNT < PTHREAD_OBJ_MASK_INIT,
"CONFIG_MAX_PTHREAD_COND_COUNT is too high");
static inline size_t posix_cond_to_offset(struct posix_cond *cv)
{
return cv - posix_cond_pool;
}
static inline size_t to_posix_cond_idx(pthread_cond_t cond)
{
return mark_pthread_obj_uninitialized(cond);
}
struct posix_cond *get_posix_cond(pthread_cond_t cond)
{
int actually_initialized;
size_t bit = to_posix_cond_idx(cond);
/* if the provided cond does not claim to be initialized, its invalid */
if (!is_pthread_obj_initialized(cond)) {
return NULL;
}
/* Mask off the MSB to get the actual bit index */
if (sys_bitarray_test_bit(&posix_cond_bitarray, bit, &actually_initialized) < 0) {
return NULL;
}
if (actually_initialized == 0) {
/* The cond claims to be initialized but is actually not */
return NULL;
}
return &posix_cond_pool[bit];
}
struct posix_cond *to_posix_cond(pthread_cond_t *cvar)
{
size_t bit;
struct posix_cond *cv;
if (*cvar != PTHREAD_COND_INITIALIZER) {
return get_posix_cond(*cvar);
}
/* Try and automatically associate a posix_cond */
if (sys_bitarray_alloc(&posix_cond_bitarray, 1, &bit) < 0) {
/* No conds left to allocate */
return NULL;
}
/* Record the associated posix_cond in mu and mark as initialized */
*cvar = mark_pthread_obj_initialized(bit);
cv = &posix_cond_pool[bit];
/* Initialize the condition variable here */
z_waitq_init(&cv->wait_q);
return cv;
}
static int cond_wait(pthread_cond_t *cond, pthread_mutex_t *mu, k_timeout_t timeout)
{
int ret;
k_spinlock_key_t key;
struct posix_cond *cv;
struct posix_mutex *m;
key = k_spin_lock(&z_pthread_spinlock);
m = to_posix_mutex(mu);
if (m == NULL) {
k_spin_unlock(&z_pthread_spinlock, key);
return EINVAL;
}
cv = to_posix_cond(cond);
if (cv == NULL) {
k_spin_unlock(&z_pthread_spinlock, key);
return EINVAL;
}
__ASSERT_NO_MSG(m->lock_count == 1U);
m->lock_count = 0U;
m->owner = NULL;
_ready_one_thread(&m->wait_q);
ret = z_sched_wait(&z_pthread_spinlock, key, &cv->wait_q, timeout, NULL);
/* FIXME: this extra lock (and the potential context switch it
* can cause) could be optimized out. At the point of the
* signal/broadcast, it's possible to detect whether or not we
* will be swapping back to this particular thread and lock it
* (i.e. leave the lock variable unchanged) on our behalf.
* But that requires putting scheduler intelligence into this
* higher level abstraction and is probably not worth it.
*/
pthread_mutex_lock(mu);
return ret == -EAGAIN ? ETIMEDOUT : ret;
}
int pthread_cond_signal(pthread_cond_t *cvar)
{
k_spinlock_key_t key;
struct posix_cond *cv;
key = k_spin_lock(&z_pthread_spinlock);
cv = to_posix_cond(cvar);
if (cv == NULL) {
k_spin_unlock(&z_pthread_spinlock, key);
return EINVAL;
}
k_spin_unlock(&z_pthread_spinlock, key);
z_sched_wake(&cv->wait_q, 0, NULL);
return 0;
}
int pthread_cond_broadcast(pthread_cond_t *cvar)
{
k_spinlock_key_t key;
struct posix_cond *cv;
key = k_spin_lock(&z_pthread_spinlock);
cv = to_posix_cond(cvar);
if (cv == NULL) {
k_spin_unlock(&z_pthread_spinlock, key);
return EINVAL;
}
k_spin_unlock(&z_pthread_spinlock, key);
z_sched_wake_all(&cv->wait_q, 0, NULL);
return 0;
}
int pthread_cond_wait(pthread_cond_t *cv, pthread_mutex_t *mut)
{
return cond_wait(cv, mut, K_FOREVER);
}
int pthread_cond_timedwait(pthread_cond_t *cv, pthread_mutex_t *mut, const struct timespec *abstime)
{
int32_t timeout = (int32_t)timespec_to_timeoutms(abstime);
return cond_wait(cv, mut, K_MSEC(timeout));
}
int pthread_cond_init(pthread_cond_t *cvar, const pthread_condattr_t *att)
{
k_spinlock_key_t key;
struct posix_cond *cv;
ARG_UNUSED(att);
*cvar = PTHREAD_COND_INITIALIZER;
key = k_spin_lock(&z_pthread_spinlock);
cv = to_posix_cond(cvar);
if (cv == NULL) {
k_spin_unlock(&z_pthread_spinlock, key);
return EINVAL;
}
k_spin_unlock(&z_pthread_spinlock, key);
return 0;
}
int pthread_cond_destroy(pthread_cond_t *cvar)
{
__unused int rc;
k_spinlock_key_t key;
struct posix_cond *cv;
pthread_cond_t c = *cvar;
size_t bit = to_posix_cond_idx(c);
key = k_spin_lock(&z_pthread_spinlock);
cv = get_posix_cond(c);
if (cv == NULL) {
k_spin_unlock(&z_pthread_spinlock, key);
return EINVAL;
}
rc = sys_bitarray_free(&posix_cond_bitarray, 1, bit);
__ASSERT(rc == 0, "failed to free bit %zu", bit);
k_spin_unlock(&z_pthread_spinlock, key);
return 0;
}