442 lines
12 KiB
C
442 lines
12 KiB
C
/*
|
|
* Copyright (c) 2019 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
#include <zephyr/sys/sys_heap.h>
|
|
#include <zephyr/sys/util.h>
|
|
#include <zephyr/kernel.h>
|
|
#include "heap.h"
|
|
|
|
/* White-box sys_heap validation code. Uses internal data structures.
|
|
* Not expected to be useful in production apps. This checks every
|
|
* header field of every chunk and returns true if the totality of the
|
|
* data structure is a valid heap. It doesn't necessarily tell you
|
|
* that it is the CORRECT heap given the history of alloc/free calls
|
|
* that it can't inspect. In a pathological case, you can imagine
|
|
* something scribbling a copy of a previously-valid heap on top of a
|
|
* running one and corrupting it. YMMV.
|
|
*/
|
|
|
|
#define VALIDATE(cond) do { if (!(cond)) { return false; } } while (0)
|
|
|
|
static bool in_bounds(struct z_heap *h, chunkid_t c)
|
|
{
|
|
VALIDATE(c >= right_chunk(h, 0));
|
|
VALIDATE(c < h->end_chunk);
|
|
VALIDATE(chunk_size(h, c) < h->end_chunk);
|
|
return true;
|
|
}
|
|
|
|
static bool valid_chunk(struct z_heap *h, chunkid_t c)
|
|
{
|
|
VALIDATE(chunk_size(h, c) > 0);
|
|
VALIDATE(c + chunk_size(h, c) <= h->end_chunk);
|
|
VALIDATE(in_bounds(h, c));
|
|
VALIDATE(right_chunk(h, left_chunk(h, c)) == c);
|
|
VALIDATE(left_chunk(h, right_chunk(h, c)) == c);
|
|
if (chunk_used(h, c)) {
|
|
VALIDATE(!solo_free_header(h, c));
|
|
} else {
|
|
VALIDATE(chunk_used(h, left_chunk(h, c)));
|
|
VALIDATE(chunk_used(h, right_chunk(h, c)));
|
|
if (!solo_free_header(h, c)) {
|
|
VALIDATE(in_bounds(h, prev_free_chunk(h, c)));
|
|
VALIDATE(in_bounds(h, next_free_chunk(h, c)));
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Validate multiple state dimensions for the bucket "next" pointer
|
|
* and see that they match. Probably should unify the design a
|
|
* bit...
|
|
*/
|
|
static inline void check_nexts(struct z_heap *h, int bidx)
|
|
{
|
|
struct z_heap_bucket *b = &h->buckets[bidx];
|
|
|
|
bool emptybit = (h->avail_buckets & BIT(bidx)) == 0;
|
|
bool emptylist = b->next == 0;
|
|
bool empties_match = emptybit == emptylist;
|
|
|
|
(void)empties_match;
|
|
CHECK(empties_match);
|
|
|
|
if (b->next != 0) {
|
|
CHECK(valid_chunk(h, b->next));
|
|
}
|
|
}
|
|
|
|
static void get_alloc_info(struct z_heap *h, size_t *alloc_bytes,
|
|
size_t *free_bytes)
|
|
{
|
|
chunkid_t c;
|
|
|
|
*alloc_bytes = 0;
|
|
*free_bytes = 0;
|
|
|
|
for (c = right_chunk(h, 0); c < h->end_chunk; c = right_chunk(h, c)) {
|
|
if (chunk_used(h, c)) {
|
|
*alloc_bytes += chunksz_to_bytes(h, chunk_size(h, c));
|
|
} else if (!solo_free_header(h, c)) {
|
|
*free_bytes += chunksz_to_bytes(h, chunk_size(h, c));
|
|
}
|
|
}
|
|
}
|
|
|
|
bool sys_heap_validate(struct sys_heap *heap)
|
|
{
|
|
struct z_heap *h = heap->heap;
|
|
chunkid_t c;
|
|
|
|
/*
|
|
* Walk through the chunks linearly, verifying sizes and end pointer.
|
|
*/
|
|
for (c = right_chunk(h, 0); c < h->end_chunk; c = right_chunk(h, c)) {
|
|
if (!valid_chunk(h, c)) {
|
|
return false;
|
|
}
|
|
}
|
|
if (c != h->end_chunk) {
|
|
return false; /* Should have exactly consumed the buffer */
|
|
}
|
|
|
|
#ifdef CONFIG_SYS_HEAP_RUNTIME_STATS
|
|
/*
|
|
* Validate sys_heap_runtime_stats_get API.
|
|
* Iterate all chunks in sys_heap to get total allocated bytes and
|
|
* free bytes, then compare with the results of
|
|
* sys_heap_runtime_stats_get function.
|
|
*/
|
|
size_t allocated_bytes, free_bytes;
|
|
struct sys_memory_stats stat;
|
|
|
|
get_alloc_info(h, &allocated_bytes, &free_bytes);
|
|
sys_heap_runtime_stats_get(heap, &stat);
|
|
if ((stat.allocated_bytes != allocated_bytes) ||
|
|
(stat.free_bytes != free_bytes)) {
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/* Check the free lists: entry count should match, empty bit
|
|
* should be correct, and all chunk entries should point into
|
|
* valid unused chunks. Mark those chunks USED, temporarily.
|
|
*/
|
|
for (int b = 0; b <= bucket_idx(h, h->end_chunk); b++) {
|
|
chunkid_t c0 = h->buckets[b].next;
|
|
uint32_t n = 0;
|
|
|
|
check_nexts(h, b);
|
|
|
|
for (c = c0; c != 0 && (n == 0 || c != c0);
|
|
n++, c = next_free_chunk(h, c)) {
|
|
if (!valid_chunk(h, c)) {
|
|
return false;
|
|
}
|
|
set_chunk_used(h, c, true);
|
|
}
|
|
|
|
bool empty = (h->avail_buckets & BIT(b)) == 0;
|
|
bool zero = n == 0;
|
|
|
|
if (empty != zero) {
|
|
return false;
|
|
}
|
|
|
|
if (empty && h->buckets[b].next != 0) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Walk through the chunks linearly again, verifying that all chunks
|
|
* but solo headers are now USED (i.e. all free blocks were found
|
|
* during enumeration). Mark all such blocks UNUSED and solo headers
|
|
* USED.
|
|
*/
|
|
chunkid_t prev_chunk = 0;
|
|
for (c = right_chunk(h, 0); c < h->end_chunk; c = right_chunk(h, c)) {
|
|
if (!chunk_used(h, c) && !solo_free_header(h, c)) {
|
|
return false;
|
|
}
|
|
if (left_chunk(h, c) != prev_chunk) {
|
|
return false;
|
|
}
|
|
prev_chunk = c;
|
|
|
|
set_chunk_used(h, c, solo_free_header(h, c));
|
|
}
|
|
if (c != h->end_chunk) {
|
|
return false; /* Should have exactly consumed the buffer */
|
|
}
|
|
|
|
/* Go through the free lists again checking that the linear
|
|
* pass caught all the blocks and that they now show UNUSED.
|
|
* Mark them USED.
|
|
*/
|
|
for (int b = 0; b <= bucket_idx(h, h->end_chunk); b++) {
|
|
chunkid_t c0 = h->buckets[b].next;
|
|
int n = 0;
|
|
|
|
if (c0 == 0) {
|
|
continue;
|
|
}
|
|
|
|
for (c = c0; n == 0 || c != c0; n++, c = next_free_chunk(h, c)) {
|
|
if (chunk_used(h, c)) {
|
|
return false;
|
|
}
|
|
set_chunk_used(h, c, true);
|
|
}
|
|
}
|
|
|
|
/* Now we are valid, but have managed to invert all the in-use
|
|
* fields. One more linear pass to fix them up
|
|
*/
|
|
for (c = right_chunk(h, 0); c < h->end_chunk; c = right_chunk(h, c)) {
|
|
set_chunk_used(h, c, !chunk_used(h, c));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
struct z_heap_stress_rec {
|
|
void *(*alloc_fn)(void *arg, size_t bytes);
|
|
void (*free_fn)(void *arg, void *p);
|
|
void *arg;
|
|
size_t total_bytes;
|
|
struct z_heap_stress_block *blocks;
|
|
size_t nblocks;
|
|
size_t blocks_alloced;
|
|
size_t bytes_alloced;
|
|
uint32_t target_percent;
|
|
};
|
|
|
|
struct z_heap_stress_block {
|
|
void *ptr;
|
|
size_t sz;
|
|
};
|
|
|
|
/* Very simple LCRNG (from https://nuclear.llnl.gov/CNP/rng/rngman/node4.html)
|
|
*
|
|
* Here to guarantee cross-platform test repeatability.
|
|
*/
|
|
static uint32_t rand32(void)
|
|
{
|
|
static uint64_t state = 123456789; /* seed */
|
|
|
|
state = state * 2862933555777941757UL + 3037000493UL;
|
|
|
|
return (uint32_t)(state >> 32);
|
|
}
|
|
|
|
static bool rand_alloc_choice(struct z_heap_stress_rec *sr)
|
|
{
|
|
/* Edge cases: no blocks allocated, and no space for a new one */
|
|
if (sr->blocks_alloced == 0) {
|
|
return true;
|
|
} else if (sr->blocks_alloced >= sr->nblocks) {
|
|
return false;
|
|
} else {
|
|
|
|
/* The way this works is to scale the chance of choosing to
|
|
* allocate vs. free such that it's even odds when the heap is
|
|
* at the target percent, with linear tapering on the low
|
|
* slope (i.e. we choose to always allocate with an empty
|
|
* heap, allocate 50% of the time when the heap is exactly at
|
|
* the target, and always free when above the target). In
|
|
* practice, the operations aren't quite symmetric (you can
|
|
* always free, but your allocation might fail), and the units
|
|
* aren't matched (we're doing math based on bytes allocated
|
|
* and ignoring the overhead) but this is close enough. And
|
|
* yes, the math here is coarse (in units of percent), but
|
|
* that's good enough and fits well inside 32 bit quantities.
|
|
* (Note precision issue when heap size is above 40MB
|
|
* though!).
|
|
*/
|
|
__ASSERT(sr->total_bytes < 0xffffffffU / 100, "too big for u32!");
|
|
uint32_t full_pct = (100 * sr->bytes_alloced) / sr->total_bytes;
|
|
uint32_t target = sr->target_percent ? sr->target_percent : 1;
|
|
uint32_t free_chance = 0xffffffffU;
|
|
|
|
if (full_pct < sr->target_percent) {
|
|
free_chance = full_pct * (0x80000000U / target);
|
|
}
|
|
|
|
return rand32() > free_chance;
|
|
}
|
|
}
|
|
|
|
/* Chooses a size of block to allocate, logarithmically favoring
|
|
* smaller blocks (i.e. blocks twice as large are half as frequent
|
|
*/
|
|
static size_t rand_alloc_size(struct z_heap_stress_rec *sr)
|
|
{
|
|
ARG_UNUSED(sr);
|
|
|
|
/* Min scale of 4 means that the half of the requests in the
|
|
* smallest size have an average size of 8
|
|
*/
|
|
int scale = 4 + __builtin_clz(rand32());
|
|
|
|
return rand32() & BIT_MASK(scale);
|
|
}
|
|
|
|
/* Returns the index of a randomly chosen block to free */
|
|
static size_t rand_free_choice(struct z_heap_stress_rec *sr)
|
|
{
|
|
return rand32() % sr->blocks_alloced;
|
|
}
|
|
|
|
/* General purpose heap stress test. Takes function pointers to allow
|
|
* for testing multiple heap APIs with the same rig. The alloc and
|
|
* free functions are passed back the argument as a context pointer.
|
|
* The "log" function is for readable user output. The total_bytes
|
|
* argument should reflect the size of the heap being tested. The
|
|
* scratch array is used to store temporary state and should be sized
|
|
* about half as large as the heap itself. Returns true on success.
|
|
*/
|
|
void sys_heap_stress(void *(*alloc_fn)(void *arg, size_t bytes),
|
|
void (*free_fn)(void *arg, void *p),
|
|
void *arg, size_t total_bytes,
|
|
uint32_t op_count,
|
|
void *scratch_mem, size_t scratch_bytes,
|
|
int target_percent,
|
|
struct z_heap_stress_result *result)
|
|
{
|
|
struct z_heap_stress_rec sr = {
|
|
.alloc_fn = alloc_fn,
|
|
.free_fn = free_fn,
|
|
.arg = arg,
|
|
.total_bytes = total_bytes,
|
|
.blocks = scratch_mem,
|
|
.nblocks = scratch_bytes / sizeof(struct z_heap_stress_block),
|
|
.target_percent = target_percent,
|
|
};
|
|
|
|
*result = (struct z_heap_stress_result) {0};
|
|
|
|
for (uint32_t i = 0; i < op_count; i++) {
|
|
if (rand_alloc_choice(&sr)) {
|
|
size_t sz = rand_alloc_size(&sr);
|
|
void *p = sr.alloc_fn(sr.arg, sz);
|
|
|
|
result->total_allocs++;
|
|
if (p != NULL) {
|
|
result->successful_allocs++;
|
|
sr.blocks[sr.blocks_alloced].ptr = p;
|
|
sr.blocks[sr.blocks_alloced].sz = sz;
|
|
sr.blocks_alloced++;
|
|
sr.bytes_alloced += sz;
|
|
}
|
|
} else {
|
|
int b = rand_free_choice(&sr);
|
|
void *p = sr.blocks[b].ptr;
|
|
size_t sz = sr.blocks[b].sz;
|
|
|
|
result->total_frees++;
|
|
sr.blocks[b] = sr.blocks[sr.blocks_alloced - 1];
|
|
sr.blocks_alloced--;
|
|
sr.bytes_alloced -= sz;
|
|
sr.free_fn(sr.arg, p);
|
|
}
|
|
result->accumulated_in_use_bytes += sr.bytes_alloced;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Print heap info for debugging / analysis purpose
|
|
*/
|
|
void heap_print_info(struct z_heap *h, bool dump_chunks)
|
|
{
|
|
int i, nb_buckets = bucket_idx(h, h->end_chunk) + 1;
|
|
size_t free_bytes, allocated_bytes, total, overhead;
|
|
|
|
printk("Heap at %p contains %d units in %d buckets\n\n",
|
|
chunk_buf(h), h->end_chunk, nb_buckets);
|
|
|
|
printk(" bucket# min units total largest largest\n"
|
|
" threshold chunks (units) (bytes)\n"
|
|
" -----------------------------------------------------------\n");
|
|
for (i = 0; i < nb_buckets; i++) {
|
|
chunkid_t first = h->buckets[i].next;
|
|
chunksz_t largest = 0;
|
|
int count = 0;
|
|
|
|
if (first) {
|
|
chunkid_t curr = first;
|
|
do {
|
|
count++;
|
|
largest = MAX(largest, chunk_size(h, curr));
|
|
curr = next_free_chunk(h, curr);
|
|
} while (curr != first);
|
|
}
|
|
if (count) {
|
|
printk("%9d %12d %12d %12d %12zd\n",
|
|
i, (1 << i) - 1 + min_chunk_size(h), count,
|
|
largest, chunksz_to_bytes(h, largest));
|
|
}
|
|
}
|
|
|
|
if (dump_chunks) {
|
|
printk("\nChunk dump:\n");
|
|
for (chunkid_t c = 0; ; c = right_chunk(h, c)) {
|
|
printk("chunk %4d: [%c] size=%-4d left=%-4d right=%d\n",
|
|
c,
|
|
chunk_used(h, c) ? '*'
|
|
: solo_free_header(h, c) ? '.'
|
|
: '-',
|
|
chunk_size(h, c),
|
|
left_chunk(h, c),
|
|
right_chunk(h, c));
|
|
if (c == h->end_chunk) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
get_alloc_info(h, &allocated_bytes, &free_bytes);
|
|
/* The end marker chunk has a header. It is part of the overhead. */
|
|
total = h->end_chunk * CHUNK_UNIT + chunk_header_bytes(h);
|
|
overhead = total - free_bytes - allocated_bytes;
|
|
printk("\n%zd free bytes, %zd allocated bytes, overhead = %zd bytes (%zd.%zd%%)\n",
|
|
free_bytes, allocated_bytes, overhead,
|
|
(1000 * overhead + total/2) / total / 10,
|
|
(1000 * overhead + total/2) / total % 10);
|
|
}
|
|
|
|
void sys_heap_print_info(struct sys_heap *heap, bool dump_chunks)
|
|
{
|
|
heap_print_info(heap->heap, dump_chunks);
|
|
}
|
|
|
|
#ifdef CONFIG_SYS_HEAP_RUNTIME_STATS
|
|
|
|
int sys_heap_runtime_stats_get(struct sys_heap *heap,
|
|
struct sys_memory_stats *stats)
|
|
{
|
|
if ((heap == NULL) || (stats == NULL)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
stats->free_bytes = heap->heap->free_bytes;
|
|
stats->allocated_bytes = heap->heap->allocated_bytes;
|
|
stats->max_allocated_bytes = heap->heap->max_allocated_bytes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sys_heap_runtime_stats_reset_max(struct sys_heap *heap)
|
|
{
|
|
if (heap == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
heap->heap->max_allocated_bytes = heap->heap->allocated_bytes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|