zephyr/drivers/disk/sdmmc_stm32.c

825 lines
19 KiB
C

/*
* Copyright (c) 2020 Amarula Solutions.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT st_stm32_sdmmc
#include <zephyr/devicetree.h>
#include <zephyr/drivers/disk.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/reset.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
#include <soc.h>
#include <stm32_ll_rcc.h>
LOG_MODULE_REGISTER(stm32_sdmmc, CONFIG_SDMMC_LOG_LEVEL);
#define STM32_SDMMC_USE_DMA DT_NODE_HAS_PROP(DT_DRV_INST(0), dmas)
#if STM32_SDMMC_USE_DMA
#include <zephyr/drivers/dma.h>
#include <zephyr/drivers/dma/dma_stm32.h>
#include <stm32_ll_dma.h>
#endif
#ifndef MMC_TypeDef
#define MMC_TypeDef SDMMC_TypeDef
#endif
#ifndef SDMMC_BUS_WIDE_1B
#define SDMMC_BUS_WIDE_1B SDIO_BUS_WIDE_1B
#endif
#ifndef SDMMC_BUS_WIDE_4B
#define SDMMC_BUS_WIDE_4B SDIO_BUS_WIDE_4B
#endif
#ifndef SDMMC_BUS_WIDE_8B
#define SDMMC_BUS_WIDE_8B SDIO_BUS_WIDE_8B
#endif
typedef void (*irq_config_func_t)(const struct device *dev);
#if STM32_SDMMC_USE_DMA
static const uint32_t table_priority[] = {
DMA_PRIORITY_LOW,
DMA_PRIORITY_MEDIUM,
DMA_PRIORITY_HIGH,
DMA_PRIORITY_VERY_HIGH
};
struct sdmmc_dma_stream {
const struct device *dev;
uint32_t channel;
uint32_t channel_nb;
DMA_TypeDef *reg;
struct dma_config cfg;
};
#endif
#ifdef CONFIG_SDMMC_STM32_EMMC
typedef MMC_HandleTypeDef HandleTypeDef;
typedef HAL_MMC_CardInfoTypeDef CardInfoTypeDef;
#else
typedef SD_HandleTypeDef HandleTypeDef;
typedef HAL_SD_CardInfoTypeDef CardInfoTypeDef;
#endif
struct stm32_sdmmc_priv {
irq_config_func_t irq_config;
struct k_sem thread_lock;
struct k_sem sync;
HandleTypeDef hsd;
int status;
struct k_work work;
struct gpio_callback cd_cb;
struct gpio_dt_spec cd;
struct gpio_dt_spec pe;
struct stm32_pclken *pclken;
const struct pinctrl_dev_config *pcfg;
const struct reset_dt_spec reset;
#if STM32_SDMMC_USE_DMA
struct sdmmc_dma_stream dma_rx;
struct sdmmc_dma_stream dma_tx;
DMA_HandleTypeDef dma_tx_handle;
DMA_HandleTypeDef dma_rx_handle;
#endif
};
#ifdef CONFIG_SDMMC_STM32_HWFC
static void stm32_sdmmc_fc_enable(struct stm32_sdmmc_priv *priv)
{
MMC_TypeDef *sdmmcx = priv->hsd.Instance;
sdmmcx->CLKCR |= SDMMC_CLKCR_HWFC_EN;
}
#endif
static void stm32_sdmmc_isr(const struct device *dev)
{
struct stm32_sdmmc_priv *priv = dev->data;
#ifdef CONFIG_SDMMC_STM32_EMMC
HAL_MMC_IRQHandler(&priv->hsd);
#else
HAL_SD_IRQHandler(&priv->hsd);
#endif
}
#define DEFINE_HAL_CALLBACK(name) \
void name(HandleTypeDef *hsd) \
{ \
struct stm32_sdmmc_priv *priv = CONTAINER_OF(hsd, struct stm32_sdmmc_priv, hsd); \
\
priv->status = hsd->ErrorCode; \
\
k_sem_give(&priv->sync); \
}
#ifdef CONFIG_SDMMC_STM32_EMMC
DEFINE_HAL_CALLBACK(HAL_MMC_TxCpltCallback);
DEFINE_HAL_CALLBACK(HAL_MMC_RxCpltCallback);
DEFINE_HAL_CALLBACK(HAL_MMC_ErrorCallback);
#else
DEFINE_HAL_CALLBACK(HAL_SD_TxCpltCallback);
DEFINE_HAL_CALLBACK(HAL_SD_RxCpltCallback);
DEFINE_HAL_CALLBACK(HAL_SD_ErrorCallback);
#endif
static int stm32_sdmmc_clock_enable(struct stm32_sdmmc_priv *priv)
{
const struct device *clock;
/* HSI48 Clock is enabled through using the device tree */
clock = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
if (DT_INST_NUM_CLOCKS(0) > 1) {
if (clock_control_configure(clock,
(clock_control_subsys_t)&priv->pclken[1],
NULL) != 0) {
LOG_ERR("Failed to enable SDMMC domain clock");
return -EIO;
}
}
if (IS_ENABLED(CONFIG_SDMMC_STM32_CLOCK_CHECK)) {
uint32_t sdmmc_clock_rate;
if (clock_control_get_rate(clock,
(clock_control_subsys_t)&priv->pclken[1],
&sdmmc_clock_rate) != 0) {
LOG_ERR("Failed to get SDMMC domain clock rate");
return -EIO;
}
if (sdmmc_clock_rate != MHZ(48)) {
LOG_ERR("SDMMC Clock is not 48MHz (%d)", sdmmc_clock_rate);
return -ENOTSUP;
}
}
/* Enable the APB clock for stm32_sdmmc */
return clock_control_on(clock, (clock_control_subsys_t)&priv->pclken[0]);
}
#if !defined(CONFIG_SDMMC_STM32_EMMC)
static int stm32_sdmmc_clock_disable(struct stm32_sdmmc_priv *priv)
{
const struct device *clock;
clock = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
return clock_control_off(clock,
(clock_control_subsys_t)&priv->pclken);
}
#endif
#if STM32_SDMMC_USE_DMA
static void stm32_sdmmc_dma_cb(const struct device *dev, void *arg,
uint32_t channel, int status)
{
DMA_HandleTypeDef *hdma = arg;
if (status != 0) {
LOG_ERR("DMA callback error with channel %d.", channel);
}
HAL_DMA_IRQHandler(hdma);
}
static int stm32_sdmmc_configure_dma(DMA_HandleTypeDef *handle, struct sdmmc_dma_stream *dma)
{
int ret;
if (!device_is_ready(dma->dev)) {
LOG_ERR("Failed to get dma dev");
return -ENODEV;
}
dma->cfg.user_data = handle;
ret = dma_config(dma->dev, dma->channel, &dma->cfg);
if (ret != 0) {
LOG_ERR("Failed to conig");
return ret;
}
handle->Instance = __LL_DMA_GET_STREAM_INSTANCE(dma->reg, dma->channel_nb);
handle->Init.Channel = dma->cfg.dma_slot * DMA_CHANNEL_1;
handle->Init.PeriphInc = DMA_PINC_DISABLE;
handle->Init.MemInc = DMA_MINC_ENABLE;
handle->Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
handle->Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
handle->Init.Mode = DMA_PFCTRL;
handle->Init.Priority = table_priority[dma->cfg.channel_priority],
handle->Init.FIFOMode = DMA_FIFOMODE_ENABLE;
handle->Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
handle->Init.MemBurst = DMA_MBURST_INC4;
handle->Init.PeriphBurst = DMA_PBURST_INC4;
return ret;
}
static int stm32_sdmmc_dma_init(struct stm32_sdmmc_priv *priv)
{
int err;
LOG_DBG("using dma");
err = stm32_sdmmc_configure_dma(&priv->dma_tx_handle, &priv->dma_tx);
if (err) {
LOG_ERR("failed to init tx dma");
return err;
}
__HAL_LINKDMA(&priv->hsd, hdmatx, priv->dma_tx_handle);
HAL_DMA_Init(&priv->dma_tx_handle);
err = stm32_sdmmc_configure_dma(&priv->dma_rx_handle, &priv->dma_rx);
if (err) {
LOG_ERR("failed to init rx dma");
return err;
}
__HAL_LINKDMA(&priv->hsd, hdmarx, priv->dma_rx_handle);
HAL_DMA_Init(&priv->dma_rx_handle);
return err;
}
static int stm32_sdmmc_dma_deinit(struct stm32_sdmmc_priv *priv)
{
int ret;
struct sdmmc_dma_stream *dma_tx = &priv->dma_tx;
struct sdmmc_dma_stream *dma_rx = &priv->dma_rx;
ret = dma_stop(dma_tx->dev, dma_tx->channel);
HAL_DMA_DeInit(&priv->dma_tx_handle);
if (ret != 0) {
LOG_ERR("Failed to stop tx DMA transmission");
return ret;
}
ret = dma_stop(dma_rx->dev, dma_rx->channel);
HAL_DMA_DeInit(&priv->dma_rx_handle);
if (ret != 0) {
LOG_ERR("Failed to stop rx DMA transmission");
return ret;
}
return ret;
}
#endif
static int stm32_sdmmc_access_init(struct disk_info *disk)
{
const struct device *dev = disk->dev;
struct stm32_sdmmc_priv *priv = dev->data;
int err;
if (priv->status == DISK_STATUS_NOMEDIA) {
return -ENODEV;
}
#if STM32_SDMMC_USE_DMA
err = stm32_sdmmc_dma_init(priv);
if (err) {
LOG_ERR("DMA init failed");
return err;
}
#endif
err = stm32_sdmmc_clock_enable(priv);
if (err) {
LOG_ERR("failed to init clocks");
return err;
}
err = reset_line_toggle_dt(&priv->reset);
if (err) {
LOG_ERR("failed to reset peripheral");
return err;
}
#ifdef CONFIG_SDMMC_STM32_EMMC
err = HAL_MMC_Init(&priv->hsd);
#else
err = HAL_SD_Init(&priv->hsd);
#endif
if (err != HAL_OK) {
LOG_ERR("failed to init stm32_sdmmc (ErrorCode 0x%X)", priv->hsd.ErrorCode);
return -EIO;
}
#ifdef CONFIG_SDMMC_STM32_HWFC
stm32_sdmmc_fc_enable(priv);
#endif
priv->status = DISK_STATUS_OK;
return 0;
}
static int stm32_sdmmc_access_deinit(struct stm32_sdmmc_priv *priv)
{
int err = 0;
#if STM32_SDMMC_USE_DMA
err = stm32_sdmmc_dma_deinit(priv);
if (err) {
LOG_ERR("DMA deinit failed");
return err;
}
#endif
#if defined(CONFIG_SDMMC_STM32_EMMC)
err = HAL_MMC_DeInit(&priv->hsd);
#else
err = HAL_SD_DeInit(&priv->hsd);
stm32_sdmmc_clock_disable(priv);
#endif
if (err != HAL_OK) {
LOG_ERR("failed to deinit stm32_sdmmc (ErrorCode 0x%X)", priv->hsd.ErrorCode);
return err;
}
priv->status = DISK_STATUS_UNINIT;
return 0;
}
static int stm32_sdmmc_access_status(struct disk_info *disk)
{
const struct device *dev = disk->dev;
struct stm32_sdmmc_priv *priv = dev->data;
return priv->status;
}
static int stm32_sdmmc_is_card_in_transfer(HandleTypeDef *hsd)
{
#ifdef CONFIG_SDMMC_STM32_EMMC
return HAL_MMC_GetCardState(hsd) == HAL_MMC_CARD_TRANSFER;
#else
return HAL_SD_GetCardState(hsd) == HAL_SD_CARD_TRANSFER;
#endif
}
static int stm32_sdmmc_read_blocks(HandleTypeDef *hsd, uint8_t *data_buf,
uint32_t start_sector, uint32_t num_sector)
{
#if STM32_SDMMC_USE_DMA || IS_ENABLED(DT_PROP(DT_DRV_INST(0), idma))
#ifdef CONFIG_SDMMC_STM32_EMMC
return HAL_MMC_ReadBlocks_DMA(hsd, data_buf, start_sector, num_sector);
#else
return HAL_SD_ReadBlocks_DMA(hsd, data_buf, start_sector, num_sector);
#endif
#else
#ifdef CONFIG_SDMMC_STM32_EMMC
return HAL_MMC_ReadBlocks_IT(hsd, data_buf, start_sector, num_sector);
#else
return HAL_SD_ReadBlocks_IT(hsd, data_buf, start_sector, num_sector);
#endif
#endif
}
static int stm32_sdmmc_access_read(struct disk_info *disk, uint8_t *data_buf,
uint32_t start_sector, uint32_t num_sector)
{
const struct device *dev = disk->dev;
struct stm32_sdmmc_priv *priv = dev->data;
int err;
k_sem_take(&priv->thread_lock, K_FOREVER);
err = stm32_sdmmc_read_blocks(&priv->hsd, data_buf, start_sector, num_sector);
if (err != HAL_OK) {
LOG_ERR("sd read block failed %d", err);
err = -EIO;
goto end;
}
k_sem_take(&priv->sync, K_FOREVER);
if (priv->status != DISK_STATUS_OK) {
LOG_ERR("sd read error %d", priv->status);
err = -EIO;
goto end;
}
while (!stm32_sdmmc_is_card_in_transfer(&priv->hsd)) {
}
end:
k_sem_give(&priv->thread_lock);
return err;
}
static int stm32_sdmmc_write_blocks(HandleTypeDef *hsd,
uint8_t *data_buf,
uint32_t start_sector, uint32_t num_sector)
{
#if STM32_SDMMC_USE_DMA || IS_ENABLED(DT_PROP(DT_DRV_INST(0), idma))
#ifdef CONFIG_SDMMC_STM32_EMMC
return HAL_MMC_WriteBlocks_DMA(hsd, data_buf, start_sector, num_sector);
#else
return HAL_SD_WriteBlocks_DMA(hsd, data_buf, start_sector, num_sector);
#endif
#else
#ifdef CONFIG_SDMMC_STM32_EMMC
return HAL_MMC_WriteBlocks_IT(hsd, data_buf, start_sector, num_sector);
#else
return HAL_SD_WriteBlocks_IT(hsd, data_buf, start_sector, num_sector);
#endif
#endif
}
static int stm32_sdmmc_access_write(struct disk_info *disk,
const uint8_t *data_buf,
uint32_t start_sector, uint32_t num_sector)
{
const struct device *dev = disk->dev;
struct stm32_sdmmc_priv *priv = dev->data;
int err;
k_sem_take(&priv->thread_lock, K_FOREVER);
err = stm32_sdmmc_write_blocks(&priv->hsd, (uint8_t *)data_buf, start_sector, num_sector);
if (err != HAL_OK) {
LOG_ERR("sd write block failed %d", err);
err = -EIO;
goto end;
}
k_sem_take(&priv->sync, K_FOREVER);
if (priv->status != DISK_STATUS_OK) {
LOG_ERR("sd write error %d", priv->status);
err = -EIO;
goto end;
}
while (!stm32_sdmmc_is_card_in_transfer(&priv->hsd)) {
}
end:
k_sem_give(&priv->thread_lock);
return err;
}
static int stm32_sdmmc_get_card_info(HandleTypeDef *hsd, CardInfoTypeDef *info)
{
#ifdef CONFIG_SDMMC_STM32_EMMC
return HAL_MMC_GetCardInfo(hsd, info);
#else
return HAL_SD_GetCardInfo(hsd, info);
#endif
}
static int stm32_sdmmc_access_ioctl(struct disk_info *disk, uint8_t cmd,
void *buff)
{
const struct device *dev = disk->dev;
struct stm32_sdmmc_priv *priv = dev->data;
CardInfoTypeDef info;
int err;
switch (cmd) {
case DISK_IOCTL_GET_SECTOR_COUNT:
err = stm32_sdmmc_get_card_info(&priv->hsd, &info);
if (err != HAL_OK) {
return -EIO;
}
*(uint32_t *)buff = info.LogBlockNbr;
break;
case DISK_IOCTL_GET_SECTOR_SIZE:
err = stm32_sdmmc_get_card_info(&priv->hsd, &info);
if (err != HAL_OK) {
return -EIO;
}
*(uint32_t *)buff = info.LogBlockSize;
break;
case DISK_IOCTL_GET_ERASE_BLOCK_SZ:
*(uint32_t *)buff = 1;
break;
case DISK_IOCTL_CTRL_SYNC:
/* we use a blocking API, so nothing to do for sync */
break;
case DISK_IOCTL_CTRL_INIT:
return stm32_sdmmc_access_init(disk);
case DISK_IOCTL_CTRL_DEINIT:
return stm32_sdmmc_access_deinit(priv);
default:
return -EINVAL;
}
return 0;
}
static const struct disk_operations stm32_sdmmc_ops = {
.init = stm32_sdmmc_access_init,
.status = stm32_sdmmc_access_status,
.read = stm32_sdmmc_access_read,
.write = stm32_sdmmc_access_write,
.ioctl = stm32_sdmmc_access_ioctl,
};
static struct disk_info stm32_sdmmc_info = {
.name = CONFIG_SDMMC_VOLUME_NAME,
.ops = &stm32_sdmmc_ops,
};
#ifdef CONFIG_SDMMC_STM32_EMMC
static bool stm32_sdmmc_card_present(struct stm32_sdmmc_priv *priv)
{
return true;
}
#else /* CONFIG_SDMMC_STM32_EMMC */
/*
* Check if the card is present or not. If no card detect gpio is set, assume
* the card is present. If reading the gpio fails for some reason, assume the
* card is there.
*/
static bool stm32_sdmmc_card_present(struct stm32_sdmmc_priv *priv)
{
int err;
if (!priv->cd.port) {
return true;
}
err = gpio_pin_get_dt(&priv->cd);
if (err < 0) {
LOG_WRN("reading card detect failed %d", err);
return true;
}
return err;
}
static void stm32_sdmmc_cd_handler(struct k_work *item)
{
struct stm32_sdmmc_priv *priv = CONTAINER_OF(item,
struct stm32_sdmmc_priv,
work);
if (stm32_sdmmc_card_present(priv)) {
LOG_DBG("card inserted");
priv->status = DISK_STATUS_UNINIT;
} else {
LOG_DBG("card removed");
stm32_sdmmc_access_deinit(priv);
priv->status = DISK_STATUS_NOMEDIA;
}
}
static void stm32_sdmmc_cd_callback(const struct device *gpiodev,
struct gpio_callback *cb,
uint32_t pin)
{
struct stm32_sdmmc_priv *priv = CONTAINER_OF(cb,
struct stm32_sdmmc_priv,
cd_cb);
k_work_submit(&priv->work);
}
static int stm32_sdmmc_card_detect_init(struct stm32_sdmmc_priv *priv)
{
int err;
if (!priv->cd.port) {
return 0;
}
if (!gpio_is_ready_dt(&priv->cd)) {
return -ENODEV;
}
gpio_init_callback(&priv->cd_cb, stm32_sdmmc_cd_callback,
1 << priv->cd.pin);
err = gpio_add_callback(priv->cd.port, &priv->cd_cb);
if (err) {
return err;
}
err = gpio_pin_configure_dt(&priv->cd, GPIO_INPUT);
if (err) {
goto remove_callback;
}
err = gpio_pin_interrupt_configure_dt(&priv->cd, GPIO_INT_EDGE_BOTH);
if (err) {
goto unconfigure_pin;
}
return 0;
unconfigure_pin:
gpio_pin_configure_dt(&priv->cd, GPIO_DISCONNECTED);
remove_callback:
gpio_remove_callback(priv->cd.port, &priv->cd_cb);
return err;
}
static int stm32_sdmmc_card_detect_uninit(struct stm32_sdmmc_priv *priv)
{
if (!priv->cd.port) {
return 0;
}
gpio_pin_interrupt_configure_dt(&priv->cd, GPIO_INT_MODE_DISABLED);
gpio_pin_configure_dt(&priv->cd, GPIO_DISCONNECTED);
gpio_remove_callback(priv->cd.port, &priv->cd_cb);
return 0;
}
#endif /* !CONFIG_SDMMC_STM32_EMMC */
static int stm32_sdmmc_pwr_init(struct stm32_sdmmc_priv *priv)
{
int err;
if (!priv->pe.port) {
return 0;
}
if (!gpio_is_ready_dt(&priv->pe)) {
return -ENODEV;
}
err = gpio_pin_configure_dt(&priv->pe, GPIO_OUTPUT_ACTIVE);
if (err) {
return err;
}
k_sleep(K_MSEC(50));
return 0;
}
static int stm32_sdmmc_pwr_uninit(struct stm32_sdmmc_priv *priv)
{
if (!priv->pe.port) {
return 0;
}
gpio_pin_configure_dt(&priv->pe, GPIO_DISCONNECTED);
return 0;
}
static int disk_stm32_sdmmc_init(const struct device *dev)
{
struct stm32_sdmmc_priv *priv = dev->data;
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
int err;
if (!device_is_ready(clk)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
if (!device_is_ready(priv->reset.dev)) {
LOG_ERR("reset control device not ready");
return -ENODEV;
}
/* Configure dt provided device signals when available */
err = pinctrl_apply_state(priv->pcfg, PINCTRL_STATE_DEFAULT);
if (err < 0) {
return err;
}
priv->irq_config(dev);
/* Initialize semaphores */
k_sem_init(&priv->thread_lock, 1, 1);
k_sem_init(&priv->sync, 0, 1);
#if !defined(CONFIG_SDMMC_STM32_EMMC)
k_work_init(&priv->work, stm32_sdmmc_cd_handler);
err = stm32_sdmmc_card_detect_init(priv);
if (err) {
return err;
}
#endif
err = stm32_sdmmc_pwr_init(priv);
if (err) {
goto err_card_detect;
}
if (stm32_sdmmc_card_present(priv)) {
priv->status = DISK_STATUS_UNINIT;
} else {
priv->status = DISK_STATUS_NOMEDIA;
}
stm32_sdmmc_info.dev = dev;
err = disk_access_register(&stm32_sdmmc_info);
if (err) {
goto err_pwr;
}
return 0;
err_pwr:
stm32_sdmmc_pwr_uninit(priv);
err_card_detect:
#if !defined(CONFIG_SDMMC_STM32_EMMC)
stm32_sdmmc_card_detect_uninit(priv);
#endif
return err;
}
#if DT_NODE_HAS_STATUS_OKAY(DT_DRV_INST(0))
#if STM32_SDMMC_USE_DMA
#define SDMMC_DMA_CHANNEL_INIT(dir, dir_cap) \
.dev = DEVICE_DT_GET(STM32_DMA_CTLR(0, dir)), \
.channel = DT_INST_DMAS_CELL_BY_NAME(0, dir, channel), \
.channel_nb = DT_DMAS_CELL_BY_NAME( \
DT_DRV_INST(0), dir, channel), \
.reg = (DMA_TypeDef *)DT_REG_ADDR( \
DT_PHANDLE_BY_NAME(DT_DRV_INST(0), dmas, dir)), \
.cfg = { \
.dma_slot = STM32_DMA_SLOT(0, dir, slot), \
.channel_priority = STM32_DMA_CONFIG_PRIORITY( \
STM32_DMA_CHANNEL_CONFIG(0, dir)), \
.dma_callback = stm32_sdmmc_dma_cb, \
.linked_channel = STM32_DMA_HAL_OVERRIDE, \
}, \
#define SDMMC_DMA_CHANNEL(dir, DIR) \
.dma_##dir = { \
COND_CODE_1(DT_INST_DMAS_HAS_NAME(0, dir), \
(SDMMC_DMA_CHANNEL_INIT(dir, DIR)), \
(NULL)) \
},
#else
#define SDMMC_DMA_CHANNEL(dir, DIR)
#endif
PINCTRL_DT_INST_DEFINE(0);
static void stm32_sdmmc_irq_config_func(const struct device *dev)
{
IRQ_CONNECT(DT_INST_IRQN(0),
DT_INST_IRQ(0, priority),
stm32_sdmmc_isr, DEVICE_DT_INST_GET(0),
0);
irq_enable(DT_INST_IRQN(0));
}
#if DT_INST_PROP(0, bus_width) == 1
#define SDMMC_BUS_WIDTH SDMMC_BUS_WIDE_1B
#elif DT_INST_PROP(0, bus_width) == 4
#define SDMMC_BUS_WIDTH SDMMC_BUS_WIDE_4B
#elif DT_INST_PROP(0, bus_width) == 8
#define SDMMC_BUS_WIDTH SDMMC_BUS_WIDE_8B
#endif /* DT_INST_PROP(0, bus_width) */
static struct stm32_pclken pclken_sdmmc[] = STM32_DT_INST_CLOCKS(0);
static struct stm32_sdmmc_priv stm32_sdmmc_priv_1 = {
.irq_config = stm32_sdmmc_irq_config_func,
.hsd = {
.Instance = (MMC_TypeDef *)DT_INST_REG_ADDR(0),
.Init.BusWide = SDMMC_BUS_WIDTH,
#if DT_INST_NODE_HAS_PROP(0, clk_div)
.Init.ClockDiv = DT_INST_PROP(0, clk_div),
#endif
},
#if DT_INST_NODE_HAS_PROP(0, cd_gpios)
.cd = GPIO_DT_SPEC_INST_GET(0, cd_gpios),
#endif
#if DT_INST_NODE_HAS_PROP(0, pwr_gpios)
.pe = GPIO_DT_SPEC_INST_GET(0, pwr_gpios),
#endif
.pclken = pclken_sdmmc,
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0),
.reset = RESET_DT_SPEC_INST_GET(0),
SDMMC_DMA_CHANNEL(rx, RX)
SDMMC_DMA_CHANNEL(tx, TX)
};
DEVICE_DT_INST_DEFINE(0, disk_stm32_sdmmc_init, NULL,
&stm32_sdmmc_priv_1, NULL, POST_KERNEL,
CONFIG_SD_INIT_PRIORITY,
NULL);
#endif