zephyr/drivers/timer/mtk_adsp_timer.c

181 lines
5.5 KiB
C

/* Copyright 2023 The ChromiumOS Authors
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/spinlock.h>
#include <zephyr/init.h>
#include <zephyr/drivers/timer/system_timer.h>
#define OSTIMER64_BASE DT_REG_ADDR(DT_NODELABEL(ostimer64))
#define OSTIMER_BASE DT_REG_ADDR(DT_NODELABEL(ostimer0))
/*
* This device has a LOT of timer hardware. There are SIX
* instantiated devices, with THREE different interfaces! Not
* including the three Xtensa CCOUNT timers!
*
* In practice only "ostimer0" is used as an interrupt source by the
* original SOF code, and the "ostimer64" and "platform" timers
* reflect the same underlying clock (though they're different
* counters with different values). There is also a "ptimer" device,
* which is unused by SOF and not exercised by this driver.
*
* The driver architecture itself is sort of a hybrid of what other
* Zephyr drivers use: there is no (or at least no documented)
* comparator facility. The "ostimer64" is used as the system clock,
* which is a 13 MHz 64 bit up-counter. But timeout interrupts are
* delivered by ostimers[0], which is a 32 bit (!) down-counter (!!)
* running at twice (!!!) the rate: 26MHz. Testing shows they're
* slaved the same underlying clock -- they don't skew relative to
* each other.
*/
struct mtk_ostimer {
unsigned int con;
unsigned int rst;
unsigned int cur;
unsigned int irq_ack;
};
struct mtk_ostimer64 {
unsigned int con;
unsigned int init_l;
unsigned int init_h;
unsigned int cur_l;
unsigned int cur_h;
unsigned int tval_h;
unsigned int irq_ack;
};
#define OSTIMER64 (*(volatile struct mtk_ostimer64 *)OSTIMER64_BASE)
#define OSTIMERS ((volatile struct mtk_ostimer *)OSTIMER_BASE)
#define OSTIMER_CON_ENABLE BIT(0)
#define OSTIMER_CON_CLKSRC_MASK 0x30
#define OSTIMER_CON_CLKSRC_32K 0x00 /* 32768 Hz */
#define OSTIMER_CON_CLKSRC_26M 0x10 /* 26 MHz */
#define OSTIMER_CON_CLKSRC_BCLK 0x20 /* CPU speed, 720 MHz */
#define OSTIMER_CON_CLKSRC_PCLK 0x30 /* ~312 MHz experimentally */
#define OSTIMER_IRQ_ACK_ENABLE BIT(4) /* read = status, write = enable */
#define OSTIMER_IRQ_ACK_CLEAR BIT(5)
#define OST64_HZ 13000000U
#define OST_HZ 26000000U
#define OST64_PER_TICK (OST64_HZ / CONFIG_SYS_CLOCK_TICKS_PER_SEC)
#define OST_PER_TICK (OST_HZ / CONFIG_SYS_CLOCK_TICKS_PER_SEC)
#define MAX_TICKS ((0xffffffffU - OST_PER_TICK) / OST_PER_TICK)
#define CYC64_MAX (0xffffffff - OST64_PER_TICK)
static struct k_spinlock lock;
static uint64_t last_announce;
uint32_t sys_clock_cycle_get_32(void)
{
return OSTIMER64.cur_l;
}
uint64_t sys_clock_cycle_get_64(void)
{
uint32_t l, h0, h1;
do {
h0 = OSTIMER64.cur_h;
l = OSTIMER64.cur_l;
h1 = OSTIMER64.cur_h;
} while (h0 != h1);
return (((uint64_t)h0) << 32) | l;
}
void sys_clock_set_timeout(int32_t ticks, bool idle)
{
/* Compute desired expiration time */
uint64_t now = sys_clock_cycle_get_64();
uint64_t end = now + CLAMP(ticks - 1, 0, MAX_TICKS) * OST64_PER_TICK;
uint32_t dt = (uint32_t)MIN(end - last_announce, CYC64_MAX);
/* Round up to tick boundary */
dt = ((dt + OST64_PER_TICK - 1) / OST64_PER_TICK) * OST64_PER_TICK;
/* Convert to "fast" OSTIMER[0] cycles! */
uint32_t cyc = 2 * (dt - (uint32_t)(now - last_announce));
/* Writes to RST need to be done when the device is disabled,
* and automatically reset CUR (which reads zero while disabled)
*/
OSTIMERS[0].con &= ~OSTIMER_CON_ENABLE;
OSTIMERS[0].rst = cyc;
OSTIMERS[0].irq_ack |= OSTIMER_IRQ_ACK_CLEAR;
OSTIMERS[0].irq_ack |= OSTIMER_IRQ_ACK_ENABLE;
OSTIMERS[0].con |= OSTIMER_CON_ENABLE;
}
uint32_t sys_clock_elapsed(void)
{
k_spinlock_key_t key = k_spin_lock(&lock);
uint32_t ret;
ret = (uint32_t)((sys_clock_cycle_get_64() - last_announce)
/ OST64_PER_TICK);
k_spin_unlock(&lock, key);
return ret;
}
static void timer_isr(__maybe_unused void *arg)
{
/* Note: no locking. As it happens, on MT8195/8186/8188 all
* Zephyr-usable interrupts are delivered at the same level.
* So we can't be preempted and there's actually no need to
* take a spinlock here. But ideally we should verify/detect
* this instead of trusting blindly; this is fragile if future
* devices add nested interrupts.
*/
uint64_t dcyc = sys_clock_cycle_get_64() - last_announce;
uint64_t ticks = dcyc / OST64_PER_TICK;
/* Leave the device disabled after clearing the interrupt,
* sys_clock_set_timeout() is responsible for turning it back
* on.
*/
OSTIMERS[0].irq_ack |= OSTIMER_IRQ_ACK_CLEAR;
OSTIMERS[0].con &= ~OSTIMER_CON_ENABLE;
OSTIMERS[0].irq_ack &= ~OSTIMER_IRQ_ACK_ENABLE;
last_announce += ticks * OST64_PER_TICK;
sys_clock_announce(ticks);
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
sys_clock_set_timeout(1, false);
}
}
static int mtk_adsp_timer_init(void)
{
IRQ_CONNECT(DT_IRQN(DT_NODELABEL(ostimer0)), 0, timer_isr, 0, 0);
irq_enable(DT_IRQN(DT_NODELABEL(ostimer0)));
/* Disable all timers */
for (int i = 0; i < 4; i++) {
OSTIMERS[i].con &= ~OSTIMER_CON_ENABLE;
OSTIMERS[i].irq_ack |= OSTIMER_IRQ_ACK_CLEAR;
OSTIMERS[i].irq_ack &= ~OSTIMER_IRQ_ACK_ENABLE;
}
/* Set them up to use the same clock. Note that OSTIMER64 has
* a built-in divide by two (or it's configurable and I don't
* know the register) and exposes a 13 MHz counter!
*/
OSTIMERS[0].con = ((OSTIMERS[0].con & ~OSTIMER_CON_CLKSRC_MASK)
| OSTIMER_CON_CLKSRC_26M);
OSTIMERS[0].con |= OSTIMER_CON_ENABLE;
/* Clock is free running and survives reset, doesn't start at zero */
last_announce = sys_clock_cycle_get_64();
return 0;
}
SYS_INIT(mtk_adsp_timer_init, PRE_KERNEL_2, CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);