251 lines
7.3 KiB
C
251 lines
7.3 KiB
C
/*
|
|
* Copyright (c) 2021, NXP
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#define DT_DRV_COMPAT nxp_gpt_hw_timer
|
|
|
|
#include <zephyr/init.h>
|
|
#include <zephyr/drivers/timer/system_timer.h>
|
|
#include <fsl_gpt.h>
|
|
#include <zephyr/sys_clock.h>
|
|
#include <zephyr/spinlock.h>
|
|
#include <zephyr/sys/time_units.h>
|
|
#include <zephyr/irq.h>
|
|
|
|
|
|
/*
|
|
* By limiting counter to 30 bits, we ensure that
|
|
* timeout calculations will never overflow in sys_clock_set_timeout
|
|
*/
|
|
#define COUNTER_MAX 0x3fffffff
|
|
|
|
#define CYC_PER_TICK (sys_clock_hw_cycles_per_sec() \
|
|
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC)
|
|
|
|
#define MAX_TICKS ((COUNTER_MAX / CYC_PER_TICK) - 1)
|
|
#define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK)
|
|
|
|
/* Use the first device defined with GPT HW timer compatible string */
|
|
#define GPT_INST DT_INST(0, DT_DRV_COMPAT)
|
|
|
|
/*
|
|
* Stores the current number of cycles the system has had announced to it,
|
|
* since the last rollover of the free running counter.
|
|
*/
|
|
static uint32_t announced_cycles;
|
|
|
|
/*
|
|
* Stores the number of cycles that have elapsed due to counter rollover.
|
|
* this value is updated in the GPT isr, and is used to keep the value
|
|
* returned by sys_clock_cycle_get_32 accurate after a timer rollover.
|
|
*/
|
|
static uint32_t rollover_cycles;
|
|
|
|
/* GPT timer base address */
|
|
static GPT_Type *base;
|
|
|
|
/* Lock on shared variables */
|
|
static struct k_spinlock lock;
|
|
|
|
/* Helper function to set GPT compare value, so we don't set a compare point in past */
|
|
static void gpt_set_safe(uint32_t next)
|
|
{
|
|
|
|
uint32_t now;
|
|
|
|
next = MIN(MAX_CYCLES, next);
|
|
GPT_SetOutputCompareValue(base, kGPT_OutputCompare_Channel2, next - 1);
|
|
now = GPT_GetCurrentTimerCount(base);
|
|
|
|
/* GPT fires interrupt at next counter cycle after a compare point is
|
|
* hit, so we should bump the compare point if 1 cycle or less exists
|
|
* between now and compare point.
|
|
*
|
|
* We will exit this loop if next==MAX_CYCLES, as we already
|
|
* have a rollover interrupt set up for that point, so we
|
|
* no longer need to keep bumping the compare point.
|
|
*/
|
|
if (unlikely(((int32_t)(next - now)) <= 1)) {
|
|
uint32_t bump = 1;
|
|
|
|
do {
|
|
next = now + bump;
|
|
bump *= 2;
|
|
next = MIN(MAX_CYCLES, next);
|
|
GPT_SetOutputCompareValue(base,
|
|
kGPT_OutputCompare_Channel2, next - 1);
|
|
now = GPT_GetCurrentTimerCount(base);
|
|
} while ((((int32_t)(next - now)) <= 1) && (next < MAX_CYCLES));
|
|
}
|
|
}
|
|
|
|
/* Interrupt fires every time GPT reaches the current capture value */
|
|
void mcux_imx_gpt_isr(const void *arg)
|
|
{
|
|
ARG_UNUSED(arg);
|
|
k_spinlock_key_t key;
|
|
uint32_t tick_delta = 0, now, status;
|
|
|
|
key = k_spin_lock(&lock);
|
|
if (IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
|
|
/* Get current timer count */
|
|
now = GPT_GetCurrentTimerCount(base);
|
|
status = GPT_GetStatusFlags(base,
|
|
kGPT_OutputCompare2Flag | kGPT_OutputCompare1Flag);
|
|
/* Clear GPT capture interrupts */
|
|
GPT_ClearStatusFlags(base, status);
|
|
if (status & kGPT_OutputCompare1Flag) {
|
|
/* Counter has just rolled over. We should
|
|
* reset the announced cycles counter, and record the
|
|
* cycles that remained before rollover.
|
|
*
|
|
* Since rollover occurs on a tick boundary, we don't
|
|
* need to worry about losing time here due to rounding.
|
|
*/
|
|
tick_delta += (MAX_CYCLES - announced_cycles) / CYC_PER_TICK;
|
|
announced_cycles = 0U;
|
|
/* Update count of rolled over cycles */
|
|
rollover_cycles += MAX_CYCLES;
|
|
}
|
|
if (status & kGPT_OutputCompare2Flag) {
|
|
/* Normal counter interrupt. Get delta since last announcement */
|
|
tick_delta += (now - announced_cycles) / CYC_PER_TICK;
|
|
announced_cycles += (((now - announced_cycles) / CYC_PER_TICK) *
|
|
CYC_PER_TICK);
|
|
}
|
|
} else {
|
|
GPT_ClearStatusFlags(base, kGPT_OutputCompare1Flag);
|
|
/* Update count of rolled over cycles */
|
|
rollover_cycles += CYC_PER_TICK;
|
|
}
|
|
|
|
/* Announce progress to the kernel */
|
|
k_spin_unlock(&lock, key);
|
|
sys_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL) ? tick_delta : 1);
|
|
}
|
|
|
|
/*
|
|
* Next needed call to sys_clock_announce will not be until the specified number
|
|
* of ticks from the current time have elapsed.
|
|
*/
|
|
void sys_clock_set_timeout(int32_t ticks, bool idle)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
|
|
/* Not supported on tickful kernels */
|
|
return;
|
|
}
|
|
k_spinlock_key_t key;
|
|
uint32_t next, adj, now;
|
|
|
|
ticks = (ticks == K_TICKS_FOREVER) ? MAX_TICKS : ticks;
|
|
/* Clamp ticks. We subtract one since we round up to next tick */
|
|
ticks = CLAMP((ticks - 1), 0, (int32_t)MAX_TICKS);
|
|
|
|
key = k_spin_lock(&lock);
|
|
|
|
/* Read current timer value */
|
|
now = GPT_GetCurrentTimerCount(base);
|
|
|
|
/* Adjustment value, used to ensure next capture is on tick boundary */
|
|
adj = (now - announced_cycles) + (CYC_PER_TICK - 1);
|
|
|
|
next = ticks * CYC_PER_TICK;
|
|
/*
|
|
* The following section rounds the capture value up to the next tick
|
|
* boundary
|
|
*/
|
|
next += adj;
|
|
next = (next / CYC_PER_TICK) * CYC_PER_TICK;
|
|
next += announced_cycles;
|
|
/* Set GPT output value */
|
|
gpt_set_safe(next);
|
|
k_spin_unlock(&lock, key);
|
|
}
|
|
|
|
/* Get the number of ticks since the last call to sys_clock_announce() */
|
|
uint32_t sys_clock_elapsed(void)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
|
|
/* Always return 0 for tickful kernel system */
|
|
return 0;
|
|
}
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&lock);
|
|
uint32_t cyc = GPT_GetCurrentTimerCount(base);
|
|
|
|
cyc -= announced_cycles;
|
|
k_spin_unlock(&lock, key);
|
|
return cyc / CYC_PER_TICK;
|
|
}
|
|
|
|
/* Get the number of elapsed hardware cycles of the clock */
|
|
uint32_t sys_clock_cycle_get_32(void)
|
|
{
|
|
return rollover_cycles + GPT_GetCurrentTimerCount(base);
|
|
}
|
|
|
|
/*
|
|
* @brief Initialize system timer driver
|
|
*
|
|
* Enable the hw timer, setting its tick period, and setup its interrupt
|
|
*/
|
|
int sys_clock_driver_init(void)
|
|
{
|
|
gpt_config_t gpt_config;
|
|
|
|
/* Configure ISR. Use instance 0 of the GPT timer */
|
|
IRQ_CONNECT(DT_IRQN(GPT_INST), DT_IRQ(GPT_INST, priority),
|
|
mcux_imx_gpt_isr, NULL, 0);
|
|
|
|
base = (GPT_Type *)DT_REG_ADDR(GPT_INST);
|
|
|
|
GPT_GetDefaultConfig(&gpt_config);
|
|
/* Enable GPT timer to run in SOC low power states */
|
|
gpt_config.enableRunInStop = true;
|
|
gpt_config.enableRunInWait = true;
|
|
gpt_config.enableRunInDoze = true;
|
|
/* Use 32KHz clock frequency */
|
|
gpt_config.clockSource = kGPT_ClockSource_LowFreq;
|
|
/* We use reset mode, but reset at MAX ticks- see comment below */
|
|
gpt_config.enableFreeRun = false;
|
|
|
|
/* Initialize the GPT timer, and enable the relevant interrupts */
|
|
GPT_Init(base, &gpt_config);
|
|
announced_cycles = 0U;
|
|
rollover_cycles = 0U;
|
|
|
|
if (IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
|
|
/*
|
|
* Set GPT capture value 1 to MAX_CYCLES, and use GPT capture
|
|
* value 2 as the source for GPT interrupts. This way, we can
|
|
* use the counter as a free running timer, but it will roll
|
|
* over on a tick boundary.
|
|
*/
|
|
GPT_SetOutputCompareValue(base, kGPT_OutputCompare_Channel1,
|
|
MAX_CYCLES - 1);
|
|
|
|
/* Set initial trigger value to one tick worth of cycles */
|
|
GPT_SetOutputCompareValue(base, kGPT_OutputCompare_Channel2,
|
|
CYC_PER_TICK - 1);
|
|
/* Enable GPT interrupts for timer match, and reset at capture value 1 */
|
|
GPT_EnableInterrupts(base, kGPT_OutputCompare1InterruptEnable |
|
|
kGPT_OutputCompare2InterruptEnable);
|
|
} else {
|
|
/* For a tickful kernel, just roll the counter over every tick */
|
|
GPT_SetOutputCompareValue(base, kGPT_OutputCompare_Channel1,
|
|
CYC_PER_TICK - 1);
|
|
GPT_EnableInterrupts(base, kGPT_OutputCompare1InterruptEnable);
|
|
}
|
|
/* Enable IRQ */
|
|
irq_enable(DT_IRQN(GPT_INST));
|
|
/* Start timer */
|
|
GPT_StartTimer(base);
|
|
|
|
return 0;
|
|
}
|
|
|
|
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
|
|
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);
|