zephyr/drivers/gpio/gpio_xlnx_axi.c

458 lines
16 KiB
C

/*
* Copyright (c) 2020 Henrik Brix Andersen <henrik@brixandersen.dk>
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT xlnx_xps_gpio_1_00_a
#include <zephyr/device.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/irq.h>
#include <zephyr/sys/sys_io.h>
#include <zephyr/drivers/gpio/gpio_utils.h>
/* AXI GPIO v2 register offsets (See Xilinx PG144 for details) */
#define GPIO_DATA_OFFSET 0x0000
#define GPIO_TRI_OFFSET 0x0004
#define GPIO2_OFFSET 0x0008
#define GPIO2_DATA_OFFSET 0x0008
#define GPIO2_TRI_OFFSET 0x000c
#define GIER_OFFSET 0x011c
#define IPISR_OFFSET 0x0120
#define IPIER_OFFSET 0x0128
/* GIER bit definitions */
#define GIER_GIE BIT(31)
/* IPISR and IPIER bit definitions */
#define IPIXX_CH1_IE BIT(0)
#define IPIXX_CH2_IE BIT(1)
/* Maximum number of GPIOs supported per channel */
#define MAX_GPIOS 32
struct gpio_xlnx_axi_config {
/* gpio_driver_config needs to be first */
struct gpio_driver_config common;
mm_reg_t base;
uint8_t channel;
bool all_inputs: 1;
bool all_outputs: 1;
bool interrupts_available: 1;
#if DT_ANY_INST_HAS_PROP_STATUS_OKAY(interrupts)
void (*irq_config_func)(const struct device *dev);
#endif
};
struct gpio_xlnx_axi_data {
/* gpio_driver_data needs to be first */
struct gpio_driver_data common;
/* Shadow registers for data out and tristate */
uint32_t dout;
uint32_t tri;
#if DT_ANY_INST_HAS_PROP_STATUS_OKAY(interrupts)
uint32_t previous_data_reading;
sys_slist_t callbacks;
uint32_t rising_edge_interrupts;
uint32_t falling_edge_interrupts;
/* Workaround to handle channel 2 interrupts from channel 1*/
const struct device *other_channel_device;
#endif
};
static inline uint32_t gpio_xlnx_axi_read_data(const struct device *dev)
{
const struct gpio_xlnx_axi_config *config = dev->config;
return sys_read32(config->base + (config->channel * GPIO2_OFFSET) + GPIO_DATA_OFFSET);
}
static inline void gpio_xlnx_axi_write_data(const struct device *dev, uint32_t val)
{
const struct gpio_xlnx_axi_config *config = dev->config;
sys_write32(val, config->base + (config->channel * GPIO2_OFFSET) + GPIO_DATA_OFFSET);
}
static inline void gpio_xlnx_axi_write_tri(const struct device *dev, uint32_t val)
{
const struct gpio_xlnx_axi_config *config = dev->config;
sys_write32(val, config->base + (config->channel * GPIO2_OFFSET) + GPIO_TRI_OFFSET);
}
static int gpio_xlnx_axi_pin_configure(const struct device *dev, gpio_pin_t pin, gpio_flags_t flags)
{
const struct gpio_xlnx_axi_config *config = dev->config;
struct gpio_xlnx_axi_data *data = dev->data;
unsigned int key;
if (!(BIT(pin) & config->common.port_pin_mask)) {
return -EINVAL;
}
if (((flags & GPIO_INPUT) != 0) && ((flags & GPIO_OUTPUT) != 0)) {
return -ENOTSUP;
}
if ((flags & GPIO_SINGLE_ENDED) != 0) {
return -ENOTSUP;
}
if ((flags & (GPIO_PULL_UP | GPIO_PULL_DOWN)) != 0) {
return -ENOTSUP;
}
if (((flags & GPIO_INPUT) != 0) && config->all_outputs) {
return -ENOTSUP;
}
if (((flags & GPIO_OUTPUT) != 0) && config->all_inputs) {
return -ENOTSUP;
}
key = irq_lock();
switch (flags & GPIO_DIR_MASK) {
case GPIO_INPUT:
data->tri |= BIT(pin);
break;
case GPIO_OUTPUT:
if ((flags & GPIO_OUTPUT_INIT_HIGH) != 0) {
data->dout |= BIT(pin);
} else if ((flags & GPIO_OUTPUT_INIT_LOW) != 0) {
data->dout &= ~BIT(pin);
}
data->tri &= ~BIT(pin);
break;
default:
return -ENOTSUP;
}
gpio_xlnx_axi_write_data(dev, data->dout);
gpio_xlnx_axi_write_tri(dev, data->tri);
irq_unlock(key);
return 0;
}
static int gpio_xlnx_axi_port_get_raw(const struct device *dev, gpio_port_value_t *value)
{
*value = gpio_xlnx_axi_read_data(dev);
return 0;
}
static int gpio_xlnx_axi_port_set_masked_raw(const struct device *dev, gpio_port_pins_t mask,
gpio_port_value_t value)
{
struct gpio_xlnx_axi_data *data = dev->data;
unsigned int key;
key = irq_lock();
data->dout = (data->dout & ~mask) | (mask & value);
gpio_xlnx_axi_write_data(dev, data->dout);
irq_unlock(key);
return 0;
}
static int gpio_xlnx_axi_port_set_bits_raw(const struct device *dev, gpio_port_pins_t pins)
{
struct gpio_xlnx_axi_data *data = dev->data;
unsigned int key;
key = irq_lock();
data->dout |= pins;
gpio_xlnx_axi_write_data(dev, data->dout);
irq_unlock(key);
return 0;
}
static int gpio_xlnx_axi_port_clear_bits_raw(const struct device *dev, gpio_port_pins_t pins)
{
struct gpio_xlnx_axi_data *data = dev->data;
unsigned int key;
key = irq_lock();
data->dout &= ~pins;
gpio_xlnx_axi_write_data(dev, data->dout);
irq_unlock(key);
return 0;
}
static int gpio_xlnx_axi_port_toggle_bits(const struct device *dev, gpio_port_pins_t pins)
{
struct gpio_xlnx_axi_data *data = dev->data;
unsigned int key;
key = irq_lock();
data->dout ^= pins;
gpio_xlnx_axi_write_data(dev, data->dout);
irq_unlock(key);
return 0;
}
#if DT_ANY_INST_HAS_PROP_STATUS_OKAY(interrupts)
/**
* Enables interrupts for the given pins on the channel
* The axi gpio can only enable interrupts for an entire port, so we need to track
* the pins and modes ourselves.
*/
static int gpio_xlnx_axi_pin_interrupt_configure(const struct device *dev, gpio_pin_t pin,
enum gpio_int_mode mode, enum gpio_int_trig trig)
{
const struct gpio_xlnx_axi_config *config = dev->config;
struct gpio_xlnx_axi_data *data = dev->data;
const uint32_t pin_mask = BIT(pin);
const uint32_t chan_mask = BIT(config->channel);
unsigned int key;
uint32_t enabled_interrupts;
if (!config->interrupts_available) {
return -ENOTSUP;
}
if ((mode & GPIO_INT_ENABLE) && !(mode & GPIO_INT_EDGE)) {
/* only edge detection is supported */
return -ENOTSUP;
}
key = irq_lock();
data->rising_edge_interrupts &= ~pin_mask;
data->falling_edge_interrupts &= ~pin_mask;
if (mode & GPIO_INT_ENABLE) {
if (trig & GPIO_INT_HIGH_1) {
data->rising_edge_interrupts |= pin_mask;
}
if (trig & GPIO_INT_LOW_0) {
data->falling_edge_interrupts |= pin_mask;
}
}
/* if there's at least one pin interrupt enabled on the channel, enable the interrupts
* for that entire channel without changing the other channel
*/
enabled_interrupts = sys_read32(config->base + IPIER_OFFSET);
if (data->rising_edge_interrupts || data->falling_edge_interrupts) {
if (!(enabled_interrupts & chan_mask)) {
/* Clear any pending interrupts and update last state before enabling
* interrupt
*/
if (sys_read32(config->base + IPISR_OFFSET) & chan_mask) {
sys_write32(chan_mask, config->base + IPISR_OFFSET);
}
data->previous_data_reading = gpio_xlnx_axi_read_data(dev);
enabled_interrupts |= chan_mask;
}
} else {
enabled_interrupts &= ~chan_mask;
}
sys_write32(enabled_interrupts, config->base + IPIER_OFFSET);
irq_unlock(key);
return 0;
}
#endif
#if DT_ANY_INST_HAS_PROP_STATUS_OKAY(interrupts)
static int gpio_xlnx_axi_manage_callback(const struct device *dev, struct gpio_callback *callback,
bool set)
{
struct gpio_xlnx_axi_data *data = dev->data;
return gpio_manage_callback(&data->callbacks, callback, set);
}
#endif
#if DT_ANY_INST_HAS_PROP_STATUS_OKAY(interrupts)
/**
* Returns the pins on this devices channel which changed and also have an interrupt enabled on that
* pin. Also clears the pending interrupt for that channel.
*/
static uint32_t gpio_xlnx_axi_get_pending_int(const struct device *dev)
{
const struct gpio_xlnx_axi_config *config = dev->config;
struct gpio_xlnx_axi_data *data = dev->data;
const uint32_t chan_mask = BIT(config->channel);
unsigned int key;
uint32_t interrupt_flags;
uint32_t current_data;
uint32_t changed_pins;
uint32_t changed_and_rising_edge;
uint32_t changed_and_falling_edge;
uint32_t interrupts;
key = irq_lock();
/* make sure interrupt was for this channel */
interrupt_flags = sys_read32(config->base + IPISR_OFFSET);
if (!(interrupt_flags & chan_mask)) {
irq_unlock(key);
return 0;
}
/* clear pending interrupt for the whole channel */
sys_write32(chan_mask, config->base + IPISR_OFFSET);
/* find which pins changed and also have an interrupt enabled */
current_data = gpio_xlnx_axi_read_data(dev);
changed_pins = current_data ^ data->previous_data_reading;
data->previous_data_reading = current_data;
changed_and_rising_edge = (changed_pins & current_data);
changed_and_falling_edge = (changed_pins & ~current_data);
interrupts = (changed_and_rising_edge & data->rising_edge_interrupts) |
(changed_and_falling_edge & data->falling_edge_interrupts);
irq_unlock(key);
return interrupts;
}
#endif
#if DT_ANY_INST_HAS_PROP_STATUS_OKAY(interrupts)
static void gpio_xlnx_axi_isr(const struct device *dev)
{
struct gpio_xlnx_axi_data *data = dev->data;
gpio_fire_callbacks(&data->callbacks, dev, gpio_xlnx_axi_get_pending_int(dev));
/* Since both channels use the same interrupt, only the first channel registers the ISR.
* If the second channel is also enabled, then check for any events on it as well.
*/
if (data->other_channel_device) {
struct gpio_xlnx_axi_data *other_data = data->other_channel_device->data;
gpio_fire_callbacks(&other_data->callbacks, data->other_channel_device,
gpio_xlnx_axi_get_pending_int(data->other_channel_device));
}
}
#endif
static int gpio_xlnx_axi_init(const struct device *dev)
{
struct gpio_xlnx_axi_data *data = dev->data;
gpio_xlnx_axi_write_data(dev, data->dout);
gpio_xlnx_axi_write_tri(dev, data->tri);
#if DT_ANY_INST_HAS_PROP_STATUS_OKAY(interrupts)
const struct gpio_xlnx_axi_config *config = dev->config;
if (config->irq_config_func != NULL) {
/* Note: This is only called for the first channel, even if the second is enabled.
* Need to perform the setup for both channels.
* Disable all interrupts.
*/
sys_write32(0x0, config->base + IPIER_OFFSET);
/* Clear all pending interrupts */
sys_write32(sys_read32(config->base + IPISR_OFFSET), config->base + IPISR_OFFSET);
/* Enable global interrupts for this gpio device */
sys_write32(GIER_GIE, config->base + GIER_OFFSET);
config->irq_config_func(dev);
}
#endif
return 0;
}
static const struct gpio_driver_api gpio_xlnx_axi_driver_api = {
.pin_configure = gpio_xlnx_axi_pin_configure,
.port_get_raw = gpio_xlnx_axi_port_get_raw,
.port_set_masked_raw = gpio_xlnx_axi_port_set_masked_raw,
.port_set_bits_raw = gpio_xlnx_axi_port_set_bits_raw,
.port_clear_bits_raw = gpio_xlnx_axi_port_clear_bits_raw,
.port_toggle_bits = gpio_xlnx_axi_port_toggle_bits,
#if DT_ANY_INST_HAS_PROP_STATUS_OKAY(interrupts)
.pin_interrupt_configure = gpio_xlnx_axi_pin_interrupt_configure,
.manage_callback = gpio_xlnx_axi_manage_callback,
.get_pending_int = gpio_xlnx_axi_get_pending_int,
#endif
};
#define GPIO_XLNX_AXI_GPIO2_HAS_COMPAT_STATUS_OKAY(n) \
UTIL_AND(DT_NODE_HAS_COMPAT(DT_INST_CHILD(n, gpio2), xlnx_xps_gpio_1_00_a_gpio2), \
DT_NODE_HAS_STATUS_OKAY(DT_INST_CHILD(n, gpio2)))
#define GPIO_XLNX_AXI_GPIO2_COND_INIT(n) \
IF_ENABLED(UTIL_AND(DT_INST_PROP_OR(n, xlnx_is_dual, 1), \
GPIO_XLNX_AXI_GPIO2_HAS_COMPAT_STATUS_OKAY(n)), \
(GPIO_XLNX_AXI_GPIO2_INIT(n)));
#define GPIO_XLNX_AXI_GPIO2_INIT(n) \
static struct gpio_xlnx_axi_data gpio_xlnx_axi_##n##_2_data = { \
.dout = DT_INST_PROP_OR(n, xlnx_dout_default_2, 0), \
.tri = DT_INST_PROP_OR(n, xlnx_tri_default_2, GENMASK(MAX_GPIOS - 1, 0)), \
}; \
\
static const struct gpio_xlnx_axi_config gpio_xlnx_axi_##n##_2_config = { \
.common = \
{ \
.port_pin_mask = GPIO_PORT_PIN_MASK_FROM_NGPIOS( \
DT_INST_PROP_OR(n, xlnx_gpio2_width, MAX_GPIOS)), \
}, \
.base = DT_INST_REG_ADDR(n), \
.channel = 1, \
.all_inputs = DT_INST_PROP_OR(n, xlnx_all_inputs_2, 0), \
.all_outputs = DT_INST_PROP_OR(n, xlnx_all_outputs_2, 0), \
.interrupts_available = DT_INST_NODE_HAS_PROP(n, interrupts)}; \
\
DEVICE_DT_DEFINE(DT_INST_CHILD(n, gpio2), &gpio_xlnx_axi_init, NULL, \
&gpio_xlnx_axi_##n##_2_data, &gpio_xlnx_axi_##n##_2_config, PRE_KERNEL_1, \
CONFIG_GPIO_INIT_PRIORITY, &gpio_xlnx_axi_driver_api);
#define GPIO_XLNX_AXI_INIT(n) \
IF_ENABLED(DT_INST_NODE_HAS_PROP(n, interrupts), \
(static void gpio_xlnx_axi_##n##_irq_config(const struct device *dev);)) \
\
GPIO_XLNX_AXI_GPIO2_COND_INIT(n); \
\
static struct gpio_xlnx_axi_data gpio_xlnx_axi_##n##_data = { \
.dout = DT_INST_PROP_OR(n, xlnx_dout_default, 0), \
.tri = DT_INST_PROP_OR(n, xlnx_tri_default, GENMASK(MAX_GPIOS - 1, 0)), \
IF_ENABLED(UTIL_AND(UTIL_AND(DT_INST_NODE_HAS_PROP(n, interrupts), \
DT_INST_PROP_OR(n, xlnx_is_dual, 1)), \
GPIO_XLNX_AXI_GPIO2_HAS_COMPAT_STATUS_OKAY(n)), \
(.other_channel_device = DEVICE_DT_GET(DT_INST_CHILD(n, gpio2))))}; \
\
static const struct gpio_xlnx_axi_config gpio_xlnx_axi_##n##_config = { \
.common = \
{ \
.port_pin_mask = GPIO_PORT_PIN_MASK_FROM_NGPIOS( \
DT_INST_PROP_OR(n, xlnx_gpio_width, MAX_GPIOS)), \
}, \
.base = DT_INST_REG_ADDR(n), \
.channel = 0, \
.all_inputs = DT_INST_PROP_OR(n, xlnx_all_inputs, 0), \
.all_outputs = DT_INST_PROP_OR(n, xlnx_all_outputs, 0), \
.interrupts_available = DT_INST_NODE_HAS_PROP(n, interrupts), \
IF_ENABLED(DT_INST_NODE_HAS_PROP(n, interrupts), \
(.irq_config_func = gpio_xlnx_axi_##n##_irq_config))}; \
\
IF_ENABLED(DT_INST_NODE_HAS_PROP(n, interrupts), \
(static void gpio_xlnx_axi_##n##_irq_config(const struct device *dev) \
{ \
ARG_UNUSED(dev); \
\
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \
gpio_xlnx_axi_isr, DEVICE_DT_INST_GET(n), 0); \
\
irq_enable(DT_INST_IRQN(n)); \
})) \
\
DEVICE_DT_INST_DEFINE(n, gpio_xlnx_axi_init, NULL, &gpio_xlnx_axi_##n##_data, \
&gpio_xlnx_axi_##n##_config, PRE_KERNEL_1, \
CONFIG_GPIO_INIT_PRIORITY, &gpio_xlnx_axi_driver_api);
DT_INST_FOREACH_STATUS_OKAY(GPIO_XLNX_AXI_INIT)