zephyr/drivers/modem/gsm_ppp.c

632 lines
15 KiB
C

/*
* Copyright (c) 2020 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <logging/log.h>
LOG_MODULE_REGISTER(modem_gsm, CONFIG_MODEM_LOG_LEVEL);
#include <kernel.h>
#include <device.h>
#include <sys/ring_buffer.h>
#include <sys/util.h>
#include <net/ppp.h>
#include <drivers/uart.h>
#include <drivers/console/uart_mux.h>
#include "modem_context.h"
#include "modem_iface_uart.h"
#include "modem_cmd_handler.h"
#include "../console/gsm_mux.h"
#define GSM_CMD_READ_BUF 128
#define GSM_CMD_AT_TIMEOUT K_SECONDS(2)
#define GSM_CMD_SETUP_TIMEOUT K_SECONDS(6)
#define GSM_RX_STACK_SIZE CONFIG_MODEM_GSM_RX_STACK_SIZE
#define GSM_RECV_MAX_BUF 30
#define GSM_RECV_BUF_SIZE 128
#define GSM_BUF_ALLOC_TIMEOUT K_SECONDS(1)
/* During the modem setup, we first create DLCI control channel and then
* PPP and AT channels. Currently the modem does not create possible GNSS
* channel.
*/
enum setup_state {
STATE_INIT = 0,
STATE_CONTROL_CHANNEL = 0,
STATE_PPP_CHANNEL,
STATE_AT_CHANNEL,
STATE_DONE
};
static struct gsm_modem {
struct modem_context context;
struct modem_cmd_handler_data cmd_handler_data;
uint8_t cmd_read_buf[GSM_CMD_READ_BUF];
uint8_t cmd_match_buf[GSM_CMD_READ_BUF];
struct k_sem sem_response;
struct modem_iface_uart_data gsm_data;
struct k_delayed_work gsm_configure_work;
char gsm_isr_buf[PPP_MRU];
char gsm_rx_rb_buf[PPP_MRU * 3];
uint8_t *ppp_recv_buf;
size_t ppp_recv_buf_len;
enum setup_state state;
struct device *ppp_dev;
struct device *at_dev;
struct device *control_dev;
bool mux_enabled : 1;
bool mux_setup_done : 1;
bool setup_done : 1;
} gsm;
NET_BUF_POOL_DEFINE(gsm_recv_pool, GSM_RECV_MAX_BUF, GSM_RECV_BUF_SIZE,
0, NULL);
K_KERNEL_STACK_DEFINE(gsm_rx_stack, GSM_RX_STACK_SIZE);
struct k_thread gsm_rx_thread;
static void gsm_rx(struct gsm_modem *gsm)
{
LOG_DBG("starting");
while (true) {
k_sem_take(&gsm->gsm_data.rx_sem, K_FOREVER);
/* The handler will listen AT channel */
gsm->context.cmd_handler.process(&gsm->context.cmd_handler,
&gsm->context.iface);
}
}
MODEM_CMD_DEFINE(gsm_cmd_ok)
{
modem_cmd_handler_set_error(data, 0);
LOG_DBG("ok");
k_sem_give(&gsm.sem_response);
return 0;
}
MODEM_CMD_DEFINE(gsm_cmd_error)
{
modem_cmd_handler_set_error(data, -EINVAL);
LOG_DBG("error");
k_sem_give(&gsm.sem_response);
return 0;
}
static struct modem_cmd response_cmds[] = {
MODEM_CMD("OK", gsm_cmd_ok, 0U, ""),
MODEM_CMD("ERROR", gsm_cmd_error, 0U, ""),
MODEM_CMD("CONNECT", gsm_cmd_ok, 0U, ""),
};
#if defined(CONFIG_MODEM_SHELL)
#define MDM_MANUFACTURER_LENGTH 10
#define MDM_MODEL_LENGTH 16
#define MDM_REVISION_LENGTH 64
#define MDM_IMEI_LENGTH 16
struct modem_info {
char mdm_manufacturer[MDM_MANUFACTURER_LENGTH];
char mdm_model[MDM_MODEL_LENGTH];
char mdm_revision[MDM_REVISION_LENGTH];
char mdm_imei[MDM_IMEI_LENGTH];
};
static struct modem_info minfo;
/*
* Provide modem info if modem shell is enabled. This can be shown with
* "modem list" shell command.
*/
/* Handler: <manufacturer> */
MODEM_CMD_DEFINE(on_cmd_atcmdinfo_manufacturer)
{
size_t out_len;
out_len = net_buf_linearize(minfo.mdm_manufacturer,
sizeof(minfo.mdm_manufacturer) - 1,
data->rx_buf, 0, len);
minfo.mdm_manufacturer[out_len] = '\0';
LOG_INF("Manufacturer: %s", log_strdup(minfo.mdm_manufacturer));
return 0;
}
/* Handler: <model> */
MODEM_CMD_DEFINE(on_cmd_atcmdinfo_model)
{
size_t out_len;
out_len = net_buf_linearize(minfo.mdm_model,
sizeof(minfo.mdm_model) - 1,
data->rx_buf, 0, len);
minfo.mdm_model[out_len] = '\0';
LOG_INF("Model: %s", log_strdup(minfo.mdm_model));
return 0;
}
/* Handler: <rev> */
MODEM_CMD_DEFINE(on_cmd_atcmdinfo_revision)
{
size_t out_len;
out_len = net_buf_linearize(minfo.mdm_revision,
sizeof(minfo.mdm_revision) - 1,
data->rx_buf, 0, len);
minfo.mdm_revision[out_len] = '\0';
LOG_INF("Revision: %s", log_strdup(minfo.mdm_revision));
return 0;
}
/* Handler: <IMEI> */
MODEM_CMD_DEFINE(on_cmd_atcmdinfo_imei)
{
size_t out_len;
out_len = net_buf_linearize(minfo.mdm_imei, sizeof(minfo.mdm_imei) - 1,
data->rx_buf, 0, len);
minfo.mdm_imei[out_len] = '\0';
LOG_INF("IMEI: %s", log_strdup(minfo.mdm_imei));
return 0;
}
#endif /* CONFIG_MODEM_SHELL */
static struct setup_cmd setup_cmds[] = {
/* no echo */
SETUP_CMD_NOHANDLE("ATE0"),
/* hang up */
SETUP_CMD_NOHANDLE("ATH"),
/* extender errors in numeric form */
SETUP_CMD_NOHANDLE("AT+CMEE=1"),
#if defined(CONFIG_MODEM_SHELL)
/* query modem info */
SETUP_CMD("AT+CGMI", "", on_cmd_atcmdinfo_manufacturer, 0U, ""),
SETUP_CMD("AT+CGMM", "", on_cmd_atcmdinfo_model, 0U, ""),
SETUP_CMD("AT+CGMR", "", on_cmd_atcmdinfo_revision, 0U, ""),
SETUP_CMD("AT+CGSN", "", on_cmd_atcmdinfo_imei, 0U, ""),
#endif
/* disable unsolicited network registration codes */
SETUP_CMD_NOHANDLE("AT+CREG=0"),
/* create PDP context */
SETUP_CMD_NOHANDLE("AT+CGDCONT=1,\"IP\",\"" CONFIG_MODEM_GSM_APN "\""),
};
static struct setup_cmd connect_cmds[] = {
/* connect to network */
SETUP_CMD_NOHANDLE("ATD*99#"),
};
static int gsm_setup_mccmno(struct gsm_modem *gsm)
{
int ret;
if (CONFIG_MODEM_GSM_MANUAL_MCCMNO[0]) {
/* use manual MCC/MNO entry */
ret = modem_cmd_send(&gsm->context.iface,
&gsm->context.cmd_handler,
NULL, 0,
"AT+COPS=1,2,\""
CONFIG_MODEM_GSM_MANUAL_MCCMNO
"\"",
&gsm->sem_response,
GSM_CMD_AT_TIMEOUT);
} else {
/* register operator automatically */
ret = modem_cmd_send(&gsm->context.iface,
&gsm->context.cmd_handler,
NULL, 0, "AT+COPS=0,0",
&gsm->sem_response,
GSM_CMD_AT_TIMEOUT);
}
if (ret < 0) {
LOG_ERR("AT+COPS ret:%d", ret);
}
return ret;
}
static void set_ppp_carrier_on(struct gsm_modem *gsm)
{
struct device *ppp_dev = device_get_binding(CONFIG_NET_PPP_DRV_NAME);
const struct ppp_api *api;
if (!ppp_dev) {
LOG_ERR("Cannot find PPP %s!", "device");
return;
}
api = (const struct ppp_api *)ppp_dev->driver_api;
api->start(ppp_dev);
}
static void gsm_finalize_connection(struct gsm_modem *gsm)
{
int ret;
if (IS_ENABLED(CONFIG_GSM_MUX) && gsm->mux_enabled) {
ret = modem_cmd_send(&gsm->context.iface,
&gsm->context.cmd_handler,
&response_cmds[0],
ARRAY_SIZE(response_cmds),
"AT", &gsm->sem_response,
GSM_CMD_AT_TIMEOUT);
if (ret < 0) {
LOG_DBG("modem setup returned %d, %s",
ret, "retrying...");
(void)k_delayed_work_submit(&gsm->gsm_configure_work,
K_SECONDS(1));
return;
}
}
(void)gsm_setup_mccmno(gsm);
ret = modem_cmd_handler_setup_cmds(&gsm->context.iface,
&gsm->context.cmd_handler,
setup_cmds,
ARRAY_SIZE(setup_cmds),
&gsm->sem_response,
GSM_CMD_SETUP_TIMEOUT);
if (ret < 0) {
LOG_DBG("modem setup returned %d, %s",
ret, "retrying...");
(void)k_delayed_work_submit(&gsm->gsm_configure_work,
K_SECONDS(1));
return;
}
LOG_DBG("modem setup returned %d, %s", ret, "enable PPP");
ret = modem_cmd_handler_setup_cmds(&gsm->context.iface,
&gsm->context.cmd_handler,
connect_cmds,
ARRAY_SIZE(connect_cmds),
&gsm->sem_response,
GSM_CMD_SETUP_TIMEOUT);
if (ret < 0) {
LOG_DBG("modem setup returned %d, %s",
ret, "retrying...");
(void)k_delayed_work_submit(&gsm->gsm_configure_work,
K_SECONDS(1));
return;
}
gsm->setup_done = true;
/* If we are not muxing, the modem interface and gsm_rx() thread is not
* needed as PPP will handle the incoming traffic internally.
*/
if (!IS_ENABLED(CONFIG_GSM_MUX)) {
k_thread_abort(&gsm_rx_thread);
}
set_ppp_carrier_on(gsm);
if (IS_ENABLED(CONFIG_GSM_MUX) && gsm->mux_enabled) {
/* Re-use the original iface for AT channel */
ret = modem_iface_uart_init_dev(&gsm->context.iface,
gsm->at_dev->name);
if (ret < 0) {
LOG_DBG("iface %suart error %d", "AT ", ret);
} else {
/* Do a test and try to send AT command to modem */
ret = modem_cmd_send(&gsm->context.iface,
&gsm->context.cmd_handler,
&response_cmds[0],
ARRAY_SIZE(response_cmds),
"AT", &gsm->sem_response,
GSM_CMD_AT_TIMEOUT);
if (ret < 0) {
LOG_DBG("modem setup returned %d, %s",
ret, "AT cmds failed");
} else {
LOG_INF("AT channel %d connected to %s",
DLCI_AT, gsm->at_dev->name);
}
}
}
}
static int mux_enable(struct gsm_modem *gsm)
{
int ret;
/* Turn on muxing */
if (IS_ENABLED(CONFIG_MODEM_GSM_SIMCOM)) {
ret = modem_cmd_send(
&gsm->context.iface,
&gsm->context.cmd_handler,
&response_cmds[0],
ARRAY_SIZE(response_cmds),
#if defined(SIMCOM_LTE)
/* FIXME */
/* Some SIMCOM modems can set the channels */
/* Control channel always at DLCI 0 */
"AT+CMUXSRVPORT=0,0;"
/* PPP should be at DLCI 1 */
"+CMUXSRVPORT=" STRINGIFY(DLCI_PPP) ",1;"
/* AT should be at DLCI 2 */
"+CMUXSRVPORT=" STRINGIFY(DLCI_AT) ",1;"
#else
"AT"
#endif
"+CMUX=0,0,5,"
STRINGIFY(CONFIG_GSM_MUX_MRU_DEFAULT_LEN),
&gsm->sem_response,
GSM_CMD_AT_TIMEOUT);
} else {
/* Generic GSM modem */
ret = modem_cmd_send(&gsm->context.iface,
&gsm->context.cmd_handler,
&response_cmds[0],
ARRAY_SIZE(response_cmds),
"AT+CMUX=0", &gsm->sem_response,
GSM_CMD_AT_TIMEOUT);
}
if (ret < 0) {
LOG_ERR("AT+CMUX ret:%d", ret);
}
return ret;
}
static void mux_setup_next(struct gsm_modem *gsm)
{
(void)k_delayed_work_submit(&gsm->gsm_configure_work, K_MSEC(1));
}
static void mux_attach_cb(struct device *mux, int dlci_address,
bool connected, void *user_data)
{
LOG_DBG("DLCI %d to %s %s", dlci_address, mux->name,
connected ? "connected" : "disconnected");
if (connected) {
uart_irq_rx_enable(mux);
uart_irq_tx_enable(mux);
}
mux_setup_next(user_data);
}
static int mux_attach(struct device *mux, struct device *uart,
int dlci_address, void *user_data)
{
int ret = uart_mux_attach(mux, uart, dlci_address, mux_attach_cb,
user_data);
if (ret < 0) {
LOG_ERR("Cannot attach DLCI %d (%s) to %s (%d)", dlci_address,
mux->name, uart->name, ret);
return ret;
}
return 0;
}
static void mux_setup(struct k_work *work)
{
struct gsm_modem *gsm = CONTAINER_OF(work, struct gsm_modem,
gsm_configure_work);
struct device *uart = device_get_binding(CONFIG_MODEM_GSM_UART_NAME);
int ret;
switch (gsm->state) {
case STATE_CONTROL_CHANNEL:
/* Get UART device. There is one dev / DLCI */
gsm->control_dev = uart_mux_alloc();
if (gsm->control_dev == NULL) {
LOG_DBG("Cannot get UART mux for %s channel",
"control");
goto fail;
}
gsm->state = STATE_PPP_CHANNEL;
ret = mux_attach(gsm->control_dev, uart, DLCI_CONTROL, gsm);
if (ret < 0) {
goto fail;
}
break;
case STATE_PPP_CHANNEL:
gsm->ppp_dev = uart_mux_alloc();
if (gsm->ppp_dev == NULL) {
LOG_DBG("Cannot get UART mux for %s channel", "PPP");
goto fail;
}
gsm->state = STATE_AT_CHANNEL;
ret = mux_attach(gsm->ppp_dev, uart, DLCI_PPP, gsm);
if (ret < 0) {
goto fail;
}
break;
case STATE_AT_CHANNEL:
gsm->at_dev = uart_mux_alloc();
if (gsm->at_dev == NULL) {
LOG_DBG("Cannot get UART mux for %s channel", "AT");
goto fail;
}
gsm->state = STATE_DONE;
ret = mux_attach(gsm->at_dev, uart, DLCI_AT, gsm);
if (ret < 0) {
goto fail;
}
break;
case STATE_DONE:
/* At least the SIMCOM modem expects that the Internet
* connection is created in PPP channel. We will need
* to attach the AT channel to context iface after the
* PPP connection is established in order to give AT commands
* to the modem.
*/
ret = modem_iface_uart_init_dev(&gsm->context.iface,
gsm->ppp_dev->name);
if (ret < 0) {
LOG_DBG("iface %suart error %d", "PPP ", ret);
gsm->mux_enabled = false;
goto fail;
}
LOG_INF("PPP channel %d connected to %s",
DLCI_PPP, gsm->ppp_dev->name);
gsm_finalize_connection(gsm);
break;
}
return;
fail:
gsm->state = STATE_INIT;
gsm->mux_enabled = false;
}
static void gsm_configure(struct k_work *work)
{
struct gsm_modem *gsm = CONTAINER_OF(work, struct gsm_modem,
gsm_configure_work);
int ret = -1;
LOG_DBG("Starting modem %p configuration", gsm);
ret = modem_cmd_send(&gsm->context.iface,
&gsm->context.cmd_handler,
&response_cmds[0],
ARRAY_SIZE(response_cmds),
"AT", &gsm->sem_response,
GSM_CMD_AT_TIMEOUT);
if (ret < 0) {
LOG_DBG("modem not ready %d", ret);
(void)k_delayed_work_submit(&gsm->gsm_configure_work,
K_NO_WAIT);
return;
}
if (IS_ENABLED(CONFIG_GSM_MUX) && ret == 0 &&
gsm->mux_enabled == false) {
gsm->mux_setup_done = false;
ret = mux_enable(gsm);
if (ret == 0) {
gsm->mux_enabled = true;
} else {
gsm->mux_enabled = false;
}
LOG_DBG("GSM muxing %s", gsm->mux_enabled ? "enabled" :
"disabled");
if (gsm->mux_enabled) {
gsm->state = STATE_INIT;
k_delayed_work_init(&gsm->gsm_configure_work,
mux_setup);
(void)k_delayed_work_submit(&gsm->gsm_configure_work,
K_NO_WAIT);
return;
}
}
gsm_finalize_connection(gsm);
}
static int gsm_init(struct device *device)
{
struct gsm_modem *gsm = device->driver_data;
int r;
LOG_DBG("Generic GSM modem (%p)", gsm);
gsm->cmd_handler_data.cmds[CMD_RESP] = response_cmds;
gsm->cmd_handler_data.cmds_len[CMD_RESP] = ARRAY_SIZE(response_cmds);
gsm->cmd_handler_data.read_buf = &gsm->cmd_read_buf[0];
gsm->cmd_handler_data.read_buf_len = sizeof(gsm->cmd_read_buf);
gsm->cmd_handler_data.match_buf = &gsm->cmd_match_buf[0];
gsm->cmd_handler_data.match_buf_len = sizeof(gsm->cmd_match_buf);
gsm->cmd_handler_data.buf_pool = &gsm_recv_pool;
gsm->cmd_handler_data.alloc_timeout = GSM_BUF_ALLOC_TIMEOUT;
gsm->cmd_handler_data.eol = "\r";
k_sem_init(&gsm->sem_response, 0, 1);
r = modem_cmd_handler_init(&gsm->context.cmd_handler,
&gsm->cmd_handler_data);
if (r < 0) {
LOG_DBG("cmd handler error %d", r);
return r;
}
#if defined(CONFIG_MODEM_SHELL)
/* modem information storage */
gsm->context.data_manufacturer = minfo.mdm_manufacturer;
gsm->context.data_model = minfo.mdm_model;
gsm->context.data_revision = minfo.mdm_revision;
gsm->context.data_imei = minfo.mdm_imei;
#endif
gsm->gsm_data.isr_buf = &gsm->gsm_isr_buf[0];
gsm->gsm_data.isr_buf_len = sizeof(gsm->gsm_isr_buf);
gsm->gsm_data.rx_rb_buf = &gsm->gsm_rx_rb_buf[0];
gsm->gsm_data.rx_rb_buf_len = sizeof(gsm->gsm_rx_rb_buf);
r = modem_iface_uart_init(&gsm->context.iface, &gsm->gsm_data,
CONFIG_MODEM_GSM_UART_NAME);
if (r < 0) {
LOG_DBG("iface uart error %d", r);
return r;
}
r = modem_context_register(&gsm->context);
if (r < 0) {
LOG_DBG("context error %d", r);
return r;
}
LOG_DBG("iface->read %p iface->write %p",
gsm->context.iface.read, gsm->context.iface.write);
k_thread_create(&gsm_rx_thread, gsm_rx_stack,
K_KERNEL_STACK_SIZEOF(gsm_rx_stack),
(k_thread_entry_t) gsm_rx,
gsm, NULL, NULL, K_PRIO_COOP(7), 0, K_NO_WAIT);
k_thread_name_set(&gsm_rx_thread, "gsm_rx");
k_delayed_work_init(&gsm->gsm_configure_work, gsm_configure);
(void)k_delayed_work_submit(&gsm->gsm_configure_work, K_NO_WAIT);
return 0;
}
DEVICE_INIT(gsm_ppp, "modem_gsm", gsm_init, &gsm, NULL, POST_KERNEL,
CONFIG_MODEM_GSM_INIT_PRIORITY);