zephyr/kernel/userspace.c

496 lines
11 KiB
C

/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <kernel.h>
#include <string.h>
#include <misc/printk.h>
#include <misc/rb.h>
#include <kernel_structs.h>
#include <sys_io.h>
#include <ksched.h>
#include <syscall.h>
#include <syscall_handler.h>
#include <device.h>
#include <init.h>
#include <logging/sys_log.h>
#define MAX_THREAD_BITS (CONFIG_MAX_THREAD_BYTES * 8)
const char *otype_to_str(enum k_objects otype)
{
/* -fdata-sections doesn't work right except in very very recent
* GCC and these literal strings would appear in the binary even if
* otype_to_str was omitted by the linker
*/
#ifdef CONFIG_PRINTK
switch (otype) {
/* otype-to-str.h is generated automatically during build by
* gen_kobject_list.py
*/
#include <otype-to-str.h>
default:
return "?";
}
#else
ARG_UNUSED(otype);
return NULL;
#endif
}
struct perm_ctx {
int parent_id;
int child_id;
struct k_thread *parent;
};
#ifdef CONFIG_DYNAMIC_OBJECTS
struct dyn_obj {
struct _k_object kobj;
sys_dnode_t obj_list;
struct rbnode node; /* must be immediately before data member */
u8_t data[]; /* The object itself */
};
extern struct _k_object *_k_object_gperf_find(void *obj);
extern void _k_object_gperf_wordlist_foreach(_wordlist_cb_func_t func,
void *context);
static int node_lessthan(struct rbnode *a, struct rbnode *b);
/*
* Red/black tree of allocated kernel objects, for reasonably fast lookups
* based on object pointer values.
*/
static struct rbtree obj_rb_tree = {
.lessthan_fn = node_lessthan
};
/*
* Linked list of allocated kernel objects, for iteration over all allocated
* objects (and potentially deleting them during iteration).
*/
static sys_dlist_t obj_list = SYS_DLIST_STATIC_INIT(&obj_list);
/*
* TODO: Write some hash table code that will replace both obj_rb_tree
* and obj_list.
*/
static size_t obj_size_get(enum k_objects otype)
{
switch (otype) {
#include <otype-to-size.h>
default:
return sizeof(struct device);
}
}
static int node_lessthan(struct rbnode *a, struct rbnode *b)
{
return a < b;
}
static inline struct dyn_obj *node_to_dyn_obj(struct rbnode *node)
{
return CONTAINER_OF(node, struct dyn_obj, node);
}
static struct dyn_obj *dyn_object_find(void *obj)
{
struct rbnode *node;
struct dyn_obj *ret;
int key;
/* For any dynamically allocated kernel object, the object
* pointer is just a member of the conatining struct dyn_obj,
* so just a little arithmetic is necessary to locate the
* corresponding struct rbnode
*/
node = (struct rbnode *)((char *)obj - sizeof(struct rbnode));
key = irq_lock();
if (rb_contains(&obj_rb_tree, node)) {
ret = node_to_dyn_obj(node);
} else {
ret = NULL;
}
irq_unlock(key);
return ret;
}
void *_impl_k_object_alloc(enum k_objects otype)
{
struct dyn_obj *dyn_obj;
int key;
/* Stacks are not supported, we don't yet have mem pool APIs
* to request memory that is aligned
*/
__ASSERT(otype > K_OBJ_ANY && otype < K_OBJ_LAST &&
otype != K_OBJ__THREAD_STACK_ELEMENT,
"bad object type requested");
dyn_obj = z_thread_malloc(sizeof(*dyn_obj) + obj_size_get(otype));
if (!dyn_obj) {
SYS_LOG_WRN("could not allocate kernel object");
return NULL;
}
dyn_obj->kobj.name = (char *)&dyn_obj->data;
dyn_obj->kobj.type = otype;
dyn_obj->kobj.flags = K_OBJ_FLAG_ALLOC;
memset(dyn_obj->kobj.perms, 0, CONFIG_MAX_THREAD_BYTES);
/* The allocating thread implicitly gets permission on kernel objects
* that it allocates
*/
_thread_perms_set(&dyn_obj->kobj, _current);
key = irq_lock();
rb_insert(&obj_rb_tree, &dyn_obj->node);
sys_dlist_append(&obj_list, &dyn_obj->obj_list);
irq_unlock(key);
return dyn_obj->kobj.name;
}
void k_object_free(void *obj)
{
struct dyn_obj *dyn_obj;
int key;
/* This function is intentionally not exposed to user mode.
* There's currently no robust way to track that an object isn't
* being used by some other thread
*/
key = irq_lock();
dyn_obj = dyn_object_find(obj);
if (dyn_obj) {
rb_remove(&obj_rb_tree, &dyn_obj->node);
sys_dlist_remove(&dyn_obj->obj_list);
}
irq_unlock(key);
if (dyn_obj) {
k_free(dyn_obj);
}
}
struct _k_object *_k_object_find(void *obj)
{
struct _k_object *ret;
ret = _k_object_gperf_find(obj);
if (!ret) {
struct dyn_obj *dyn_obj;
dyn_obj = dyn_object_find(obj);
if (dyn_obj) {
ret = &dyn_obj->kobj;
}
}
return ret;
}
void _k_object_wordlist_foreach(_wordlist_cb_func_t func, void *context)
{
int key;
struct dyn_obj *obj, *next;
_k_object_gperf_wordlist_foreach(func, context);
key = irq_lock();
SYS_DLIST_FOR_EACH_CONTAINER_SAFE(&obj_list, obj, next, obj_list) {
func(&obj->kobj, context);
}
irq_unlock(key);
}
#endif /* CONFIG_DYNAMIC_OBJECTS */
static int thread_index_get(struct k_thread *t)
{
struct _k_object *ko;
ko = _k_object_find(t);
if (!ko) {
return -1;
}
return ko->data;
}
static void unref_check(struct _k_object *ko)
{
for (int i = 0; i < CONFIG_MAX_THREAD_BYTES; i++) {
if (ko->perms[i]) {
return;
}
}
/* This object has no more references. Some objects may have
* dynamically allocated resources, require cleanup, or need to be
* marked as uninitailized when all references are gone. What
* specifically needs to happen depends on the object type.
*/
switch (ko->type) {
case K_OBJ_PIPE:
k_pipe_cleanup((struct k_pipe *)ko->name);
break;
case K_OBJ_MSGQ:
k_msgq_cleanup((struct k_msgq *)ko->name);
break;
case K_OBJ_STACK:
k_stack_cleanup((struct k_stack *)ko->name);
break;
default:
break;
}
#ifdef CONFIG_DYNAMIC_OBJECTS
if (ko->flags & K_OBJ_FLAG_ALLOC) {
struct dyn_obj *dyn_obj =
CONTAINER_OF(ko, struct dyn_obj, kobj);
rb_remove(&obj_rb_tree, &dyn_obj->node);
sys_dlist_remove(&dyn_obj->obj_list);
k_free(dyn_obj);
}
#endif
}
static void wordlist_cb(struct _k_object *ko, void *ctx_ptr)
{
struct perm_ctx *ctx = (struct perm_ctx *)ctx_ptr;
if (sys_bitfield_test_bit((mem_addr_t)&ko->perms, ctx->parent_id) &&
(struct k_thread *)ko->name != ctx->parent) {
sys_bitfield_set_bit((mem_addr_t)&ko->perms, ctx->child_id);
}
}
void _thread_perms_inherit(struct k_thread *parent, struct k_thread *child)
{
struct perm_ctx ctx = {
thread_index_get(parent),
thread_index_get(child),
parent
};
if ((ctx.parent_id != -1) && (ctx.child_id != -1)) {
_k_object_wordlist_foreach(wordlist_cb, &ctx);
}
}
void _thread_perms_set(struct _k_object *ko, struct k_thread *thread)
{
int index = thread_index_get(thread);
if (index != -1) {
sys_bitfield_set_bit((mem_addr_t)&ko->perms, index);
}
}
void _thread_perms_clear(struct _k_object *ko, struct k_thread *thread)
{
int index = thread_index_get(thread);
if (index != -1) {
int key = irq_lock();
sys_bitfield_clear_bit((mem_addr_t)&ko->perms, index);
unref_check(ko);
irq_unlock(key);
}
}
static void clear_perms_cb(struct _k_object *ko, void *ctx_ptr)
{
int id = (int)ctx_ptr;
int key = irq_lock();
sys_bitfield_clear_bit((mem_addr_t)&ko->perms, id);
unref_check(ko);
irq_unlock(key);
}
void _thread_perms_all_clear(struct k_thread *thread)
{
int index = thread_index_get(thread);
if (index != -1) {
_k_object_wordlist_foreach(clear_perms_cb, (void *)index);
}
}
static int thread_perms_test(struct _k_object *ko)
{
int index;
if (ko->flags & K_OBJ_FLAG_PUBLIC) {
return 1;
}
index = thread_index_get(_current);
if (index != -1) {
return sys_bitfield_test_bit((mem_addr_t)&ko->perms, index);
}
return 0;
}
static void dump_permission_error(struct _k_object *ko)
{
int index = thread_index_get(_current);
printk("thread %p (%d) does not have permission on %s %p [",
_current, index,
otype_to_str(ko->type), ko->name);
for (int i = CONFIG_MAX_THREAD_BYTES - 1; i >= 0; i--) {
printk("%02x", ko->perms[i]);
}
printk("]\n");
}
void _dump_object_error(int retval, void *obj, struct _k_object *ko,
enum k_objects otype)
{
switch (retval) {
case -EBADF:
printk("%p is not a valid %s\n", obj, otype_to_str(otype));
break;
case -EPERM:
dump_permission_error(ko);
break;
case -EINVAL:
printk("%p used before initialization\n", obj);
break;
case -EADDRINUSE:
printk("%p %s in use\n", obj, otype_to_str(otype));
}
}
void _impl_k_object_access_grant(void *object, struct k_thread *thread)
{
struct _k_object *ko = _k_object_find(object);
if (ko) {
_thread_perms_set(ko, thread);
}
}
void k_object_access_revoke(void *object, struct k_thread *thread)
{
struct _k_object *ko = _k_object_find(object);
if (ko) {
_thread_perms_clear(ko, thread);
}
}
void _impl_k_object_release(void *object)
{
k_object_access_revoke(object, _current);
}
void k_object_access_all_grant(void *object)
{
struct _k_object *ko = _k_object_find(object);
if (ko) {
ko->flags |= K_OBJ_FLAG_PUBLIC;
}
}
int _k_object_validate(struct _k_object *ko, enum k_objects otype,
enum _obj_init_check init)
{
if (unlikely(!ko || (otype != K_OBJ_ANY && ko->type != otype))) {
return -EBADF;
}
/* Manipulation of any kernel objects by a user thread requires that
* thread be granted access first, even for uninitialized objects
*/
if (unlikely(!thread_perms_test(ko))) {
return -EPERM;
}
/* Initialization state checks. _OBJ_INIT_ANY, we don't care */
if (likely(init == _OBJ_INIT_TRUE)) {
/* Object MUST be intialized */
if (unlikely(!(ko->flags & K_OBJ_FLAG_INITIALIZED))) {
return -EINVAL;
}
} else if (init < _OBJ_INIT_TRUE) { /* _OBJ_INIT_FALSE case */
/* Object MUST NOT be initialized */
if (unlikely(ko->flags & K_OBJ_FLAG_INITIALIZED)) {
return -EADDRINUSE;
}
}
return 0;
}
void _k_object_init(void *object)
{
struct _k_object *ko;
/* By the time we get here, if the caller was from userspace, all the
* necessary checks have been done in _k_object_validate(), which takes
* place before the object is initialized.
*
* This function runs after the object has been initialized and
* finalizes it
*/
ko = _k_object_find(object);
if (!ko) {
/* Supervisor threads can ignore rules about kernel objects
* and may declare them on stacks, etc. Such objects will never
* be usable from userspace, but we shouldn't explode.
*/
return;
}
/* Allows non-initialization system calls to be made on this object */
ko->flags |= K_OBJ_FLAG_INITIALIZED;
}
void _k_object_uninit(void *object)
{
struct _k_object *ko;
/* See comments in _k_object_init() */
ko = _k_object_find(object);
if (!ko) {
return;
}
ko->flags &= ~K_OBJ_FLAG_INITIALIZED;
}
static u32_t handler_bad_syscall(u32_t bad_id, u32_t arg2, u32_t arg3,
u32_t arg4, u32_t arg5, u32_t arg6, void *ssf)
{
printk("Bad system call id %u invoked\n", bad_id);
_arch_syscall_oops(ssf);
CODE_UNREACHABLE;
}
static u32_t handler_no_syscall(u32_t arg1, u32_t arg2, u32_t arg3,
u32_t arg4, u32_t arg5, u32_t arg6, void *ssf)
{
printk("Unimplemented system call\n");
_arch_syscall_oops(ssf);
CODE_UNREACHABLE;
}
#include <syscall_dispatch.c>