zephyr/drivers/serial/usart_sam.c

593 lines
14 KiB
C

/*
* Copyright (c) 2016 Piotr Mienkowski
* Copyright (c) 2018 Justin Watson
* Copyright (c) 2023 Gerson Fernando Budke
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT atmel_sam_usart
/** @file
* @brief USART driver for Atmel SAM MCU family.
*/
#include <errno.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <soc.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/clock_control/atmel_sam_pmc.h>
#include <zephyr/irq.h>
/* Device constant configuration parameters */
struct usart_sam_dev_cfg {
Usart *regs;
const struct atmel_sam_pmc_config clock_cfg;
const struct pinctrl_dev_config *pcfg;
bool hw_flow_control;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_config_func_t irq_config_func;
#endif
};
/* Device run time data */
struct usart_sam_dev_data {
uint32_t baud_rate;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t irq_cb; /* Interrupt Callback */
void *cb_data; /* Interrupt Callback Arg */
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
};
static int usart_sam_poll_in(const struct device *dev, unsigned char *c)
{
const struct usart_sam_dev_cfg *config = dev->config;
Usart * const usart = config->regs;
if (!(usart->US_CSR & US_CSR_RXRDY)) {
return -1;
}
/* got a character */
*c = (unsigned char)usart->US_RHR;
return 0;
}
static void usart_sam_poll_out(const struct device *dev, unsigned char c)
{
const struct usart_sam_dev_cfg *config = dev->config;
Usart * const usart = config->regs;
/* Wait for transmitter to be ready */
while (!(usart->US_CSR & US_CSR_TXRDY)) {
}
/* send a character */
usart->US_THR = (uint32_t)c;
}
static int usart_sam_err_check(const struct device *dev)
{
const struct usart_sam_dev_cfg *config = dev->config;
volatile Usart * const usart = config->regs;
int errors = 0;
if (usart->US_CSR & US_CSR_OVRE) {
errors |= UART_ERROR_OVERRUN;
}
if (usart->US_CSR & US_CSR_PARE) {
errors |= UART_ERROR_PARITY;
}
if (usart->US_CSR & US_CSR_FRAME) {
errors |= UART_ERROR_FRAMING;
}
return errors;
}
static int usart_sam_baudrate_set(const struct device *dev, uint32_t baudrate)
{
struct usart_sam_dev_data *const dev_data = dev->data;
const struct usart_sam_dev_cfg *const config = dev->config;
volatile Usart * const usart = config->regs;
uint32_t divisor;
__ASSERT(baudrate,
"baud rate has to be bigger than 0");
__ASSERT(SOC_ATMEL_SAM_MCK_FREQ_HZ/16U >= baudrate,
"MCK frequency is too small to set required baud rate");
divisor = SOC_ATMEL_SAM_MCK_FREQ_HZ / 16U / baudrate;
if (divisor > 0xFFFF) {
return -EINVAL;
}
usart->US_BRGR = US_BRGR_CD(divisor);
dev_data->baud_rate = baudrate;
return 0;
}
static uint32_t usart_sam_cfg2sam_parity(uint8_t parity)
{
switch (parity) {
case UART_CFG_PARITY_EVEN:
return US_MR_PAR_EVEN;
case UART_CFG_PARITY_ODD:
return US_MR_PAR_ODD;
case UART_CFG_PARITY_SPACE:
return US_MR_PAR_SPACE;
case UART_CFG_PARITY_MARK:
return US_MR_PAR_MARK;
case UART_CFG_PARITY_NONE:
default:
return US_MR_PAR_NO;
}
}
static uint8_t usart_sam_get_parity(const struct device *dev)
{
const struct usart_sam_dev_cfg *const config = dev->config;
volatile Usart * const usart = config->regs;
switch (usart->US_MR & US_MR_PAR_Msk) {
case US_MR_PAR_EVEN:
return UART_CFG_PARITY_EVEN;
case US_MR_PAR_ODD:
return UART_CFG_PARITY_ODD;
case US_MR_PAR_SPACE:
return UART_CFG_PARITY_SPACE;
case US_MR_PAR_MARK:
return UART_CFG_PARITY_MARK;
case US_MR_PAR_NO:
default:
return UART_CFG_PARITY_NONE;
}
}
static uint32_t usart_sam_cfg2sam_stop_bits(uint8_t stop_bits)
{
switch (stop_bits) {
case UART_CFG_STOP_BITS_1_5:
return US_MR_NBSTOP_1_5_BIT;
case UART_CFG_STOP_BITS_2:
return US_MR_NBSTOP_2_BIT;
case UART_CFG_STOP_BITS_1:
default:
return US_MR_NBSTOP_1_BIT;
}
}
static uint8_t usart_sam_get_stop_bits(const struct device *dev)
{
const struct usart_sam_dev_cfg *const config = dev->config;
volatile Usart * const usart = config->regs;
switch (usart->US_MR & US_MR_NBSTOP_Msk) {
case US_MR_NBSTOP_1_5_BIT:
return UART_CFG_STOP_BITS_1_5;
case US_MR_NBSTOP_2_BIT:
return UART_CFG_STOP_BITS_2;
case US_MR_NBSTOP_1_BIT:
default:
return UART_CFG_STOP_BITS_1;
}
}
static uint32_t usart_sam_cfg2sam_data_bits(uint8_t data_bits)
{
switch (data_bits) {
case UART_CFG_DATA_BITS_5:
return US_MR_CHRL_5_BIT;
case UART_CFG_DATA_BITS_6:
return US_MR_CHRL_6_BIT;
case UART_CFG_DATA_BITS_7:
return US_MR_CHRL_7_BIT;
case UART_CFG_DATA_BITS_8:
default:
return US_MR_CHRL_8_BIT;
}
}
static uint8_t usart_sam_get_data_bits(const struct device *dev)
{
const struct usart_sam_dev_cfg *const config = dev->config;
volatile Usart * const usart = config->regs;
switch (usart->US_MR & US_MR_CHRL_Msk) {
case US_MR_CHRL_5_BIT:
return UART_CFG_DATA_BITS_5;
case US_MR_CHRL_6_BIT:
return UART_CFG_DATA_BITS_6;
case US_MR_CHRL_7_BIT:
return UART_CFG_DATA_BITS_7;
case US_MR_CHRL_8_BIT:
default:
return UART_CFG_DATA_BITS_8;
}
}
static uint32_t usart_sam_cfg2sam_flow_ctrl(uint8_t flow_ctrl)
{
switch (flow_ctrl) {
case UART_CFG_FLOW_CTRL_RTS_CTS:
return US_MR_USART_MODE_HW_HANDSHAKING;
case UART_CFG_FLOW_CTRL_NONE:
default:
return US_MR_USART_MODE_NORMAL;
}
}
static uint8_t usart_sam_get_flow_ctrl(const struct device *dev)
{
const struct usart_sam_dev_cfg *const config = dev->config;
volatile Usart * const usart = config->regs;
switch (usart->US_MR & US_MR_USART_MODE_Msk) {
case US_MR_USART_MODE_HW_HANDSHAKING:
return UART_CFG_FLOW_CTRL_RTS_CTS;
case US_MR_USART_MODE_NORMAL:
default:
return UART_CFG_FLOW_CTRL_NONE;
}
}
static int usart_sam_configure(const struct device *dev,
const struct uart_config *cfg)
{
int retval;
const struct usart_sam_dev_cfg *const config = dev->config;
volatile Usart * const usart = config->regs;
/* Driver doesn't support 9 data bits, 0.5 stop bits, or DTR DSR flow control */
if (cfg->data_bits == UART_CFG_DATA_BITS_9 ||
cfg->stop_bits == UART_CFG_STOP_BITS_0_5 ||
cfg->flow_ctrl == UART_CFG_FLOW_CTRL_DTR_DSR) {
return -ENOTSUP;
}
/* Reset and disable USART */
usart->US_CR = US_CR_RSTRX | US_CR_RSTTX
| US_CR_RXDIS | US_CR_TXDIS
| US_CR_RSTSTA;
/* normal UART mode, baud rate driven by peripheral clock, all
* other values chosen by config
*/
usart->US_MR = US_MR_CHMODE_NORMAL
| US_MR_USCLKS_MCK
| usart_sam_cfg2sam_parity(cfg->parity)
| usart_sam_cfg2sam_stop_bits(cfg->stop_bits)
| usart_sam_cfg2sam_data_bits(cfg->data_bits)
| usart_sam_cfg2sam_flow_ctrl(cfg->flow_ctrl);
/* Set baud rate */
retval = usart_sam_baudrate_set(dev, cfg->baudrate);
if (retval != 0) {
return retval;
}
/* Enable receiver and transmitter */
usart->US_CR = US_CR_RXEN | US_CR_TXEN;
return 0;
}
static int usart_sam_config_get(const struct device *dev,
struct uart_config *cfg)
{
struct usart_sam_dev_data *const dev_data = dev->data;
cfg->baudrate = dev_data->baud_rate;
cfg->parity = usart_sam_get_parity(dev);
cfg->stop_bits = usart_sam_get_stop_bits(dev);
cfg->data_bits = usart_sam_get_data_bits(dev);
cfg->flow_ctrl = usart_sam_get_flow_ctrl(dev);
return 0;
}
#if CONFIG_UART_INTERRUPT_DRIVEN
static int usart_sam_fifo_fill(const struct device *dev,
const uint8_t *tx_data,
int size)
{
const struct usart_sam_dev_cfg *config = dev->config;
volatile Usart * const usart = config->regs;
/* Wait for transmitter to be ready. */
while ((usart->US_CSR & US_CSR_TXRDY) == 0) {
}
usart->US_THR = *tx_data;
return 1;
}
static int usart_sam_fifo_read(const struct device *dev, uint8_t *rx_data,
const int size)
{
const struct usart_sam_dev_cfg *config = dev->config;
volatile Usart * const usart = config->regs;
int bytes_read;
bytes_read = 0;
while (bytes_read < size) {
if (usart->US_CSR & US_CSR_RXRDY) {
rx_data[bytes_read] = usart->US_RHR;
bytes_read++;
} else {
break;
}
}
return bytes_read;
}
static void usart_sam_irq_tx_enable(const struct device *dev)
{
const struct usart_sam_dev_cfg *config = dev->config;
volatile Usart * const usart = config->regs;
usart->US_IER = US_IER_TXRDY;
}
static void usart_sam_irq_tx_disable(const struct device *dev)
{
const struct usart_sam_dev_cfg *config = dev->config;
volatile Usart * const usart = config->regs;
usart->US_IDR = US_IDR_TXRDY;
}
static int usart_sam_irq_tx_ready(const struct device *dev)
{
const struct usart_sam_dev_cfg *config = dev->config;
volatile Usart * const usart = config->regs;
/* Check that the transmitter is ready but only
* return true if the interrupt is also enabled
*/
return (usart->US_CSR & US_CSR_TXRDY &&
usart->US_IMR & US_IMR_TXRDY);
}
static void usart_sam_irq_rx_enable(const struct device *dev)
{
const struct usart_sam_dev_cfg *config = dev->config;
volatile Usart * const usart = config->regs;
usart->US_IER = US_IER_RXRDY;
}
static void usart_sam_irq_rx_disable(const struct device *dev)
{
const struct usart_sam_dev_cfg *config = dev->config;
volatile Usart * const usart = config->regs;
usart->US_IDR = US_IDR_RXRDY;
}
static int usart_sam_irq_tx_complete(const struct device *dev)
{
const struct usart_sam_dev_cfg *config = dev->config;
volatile Usart * const usart = config->regs;
return (usart->US_CSR & US_CSR_TXRDY &&
usart->US_CSR & US_CSR_TXEMPTY);
}
static int usart_sam_irq_rx_ready(const struct device *dev)
{
const struct usart_sam_dev_cfg *config = dev->config;
volatile Usart * const usart = config->regs;
return (usart->US_CSR & US_CSR_RXRDY);
}
static void usart_sam_irq_err_enable(const struct device *dev)
{
const struct usart_sam_dev_cfg *config = dev->config;
volatile Usart * const usart = config->regs;
usart->US_IER = US_IER_OVRE | US_IER_FRAME | US_IER_PARE;
}
static void usart_sam_irq_err_disable(const struct device *dev)
{
const struct usart_sam_dev_cfg *config = dev->config;
volatile Usart * const usart = config->regs;
usart->US_IDR = US_IDR_OVRE | US_IDR_FRAME | US_IDR_PARE;
}
static int usart_sam_irq_is_pending(const struct device *dev)
{
const struct usart_sam_dev_cfg *config = dev->config;
volatile Usart * const usart = config->regs;
return (usart->US_IMR & (US_IMR_TXRDY | US_IMR_RXRDY)) &
(usart->US_CSR & (US_CSR_TXRDY | US_CSR_RXRDY));
}
static int usart_sam_irq_update(const struct device *dev)
{
ARG_UNUSED(dev);
return 1;
}
static void usart_sam_irq_callback_set(const struct device *dev,
uart_irq_callback_user_data_t cb,
void *cb_data)
{
struct usart_sam_dev_data *const dev_data = dev->data;
dev_data->irq_cb = cb;
dev_data->cb_data = cb_data;
}
static void usart_sam_isr(const struct device *dev)
{
struct usart_sam_dev_data *const dev_data = dev->data;
if (dev_data->irq_cb) {
dev_data->irq_cb(dev, dev_data->cb_data);
}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static int usart_sam_init(const struct device *dev)
{
int retval;
const struct usart_sam_dev_cfg *const cfg = dev->config;
struct usart_sam_dev_data *const dev_data = dev->data;
Usart * const usart = cfg->regs;
/* Enable USART clock in PMC */
(void)clock_control_on(SAM_DT_PMC_CONTROLLER,
(clock_control_subsys_t)&cfg->clock_cfg);
/* Connect pins to the peripheral */
retval = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (retval < 0) {
return retval;
}
/* Disable Interrupts */
usart->US_IDR = 0xFFFFFFFF;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
cfg->irq_config_func(dev);
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
struct uart_config uart_config = {
.baudrate = dev_data->baud_rate,
.parity = UART_CFG_PARITY_NONE,
.stop_bits = UART_CFG_STOP_BITS_1,
.data_bits = UART_CFG_DATA_BITS_8,
.flow_ctrl = UART_CFG_FLOW_CTRL_NONE,
};
if (cfg->hw_flow_control) {
uart_config.flow_ctrl = UART_CFG_FLOW_CTRL_RTS_CTS;
}
return usart_sam_configure(dev, &uart_config);
}
static const struct uart_driver_api usart_sam_driver_api = {
.poll_in = usart_sam_poll_in,
.poll_out = usart_sam_poll_out,
.err_check = usart_sam_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
.configure = usart_sam_configure,
.config_get = usart_sam_config_get,
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = usart_sam_fifo_fill,
.fifo_read = usart_sam_fifo_read,
.irq_tx_enable = usart_sam_irq_tx_enable,
.irq_tx_disable = usart_sam_irq_tx_disable,
.irq_tx_ready = usart_sam_irq_tx_ready,
.irq_rx_enable = usart_sam_irq_rx_enable,
.irq_rx_disable = usart_sam_irq_rx_disable,
.irq_tx_complete = usart_sam_irq_tx_complete,
.irq_rx_ready = usart_sam_irq_rx_ready,
.irq_err_enable = usart_sam_irq_err_enable,
.irq_err_disable = usart_sam_irq_err_disable,
.irq_is_pending = usart_sam_irq_is_pending,
.irq_update = usart_sam_irq_update,
.irq_callback_set = usart_sam_irq_callback_set,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
};
#define USART_SAM_DECLARE_CFG(n, IRQ_FUNC_INIT) \
static const struct usart_sam_dev_cfg usart##n##_sam_config = { \
.regs = (Usart *)DT_INST_REG_ADDR(n), \
.clock_cfg = SAM_DT_INST_CLOCK_PMC_CFG(n), \
.hw_flow_control = DT_INST_PROP(n, hw_flow_control), \
\
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
\
IRQ_FUNC_INIT \
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#define USART_SAM_CONFIG_FUNC(n) \
static void usart##n##_sam_irq_config_func(const struct device *port) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), \
DT_INST_IRQ(n, priority), \
usart_sam_isr, \
DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQN(n)); \
}
#define USART_SAM_IRQ_CFG_FUNC_INIT(n) \
.irq_config_func = usart##n##_sam_irq_config_func
#define USART_SAM_INIT_CFG(n) \
USART_SAM_DECLARE_CFG(n, USART_SAM_IRQ_CFG_FUNC_INIT(n))
#else
#define USART_SAM_CONFIG_FUNC(n)
#define USART_SAM_IRQ_CFG_FUNC_INIT
#define USART_SAM_INIT_CFG(n) \
USART_SAM_DECLARE_CFG(n, USART_SAM_IRQ_CFG_FUNC_INIT)
#endif
#define USART_SAM_INIT(n) \
PINCTRL_DT_INST_DEFINE(n); \
static struct usart_sam_dev_data usart##n##_sam_data = { \
.baud_rate = DT_INST_PROP(n, current_speed), \
}; \
\
static const struct usart_sam_dev_cfg usart##n##_sam_config; \
\
DEVICE_DT_INST_DEFINE(n, \
usart_sam_init, NULL, \
&usart##n##_sam_data, \
&usart##n##_sam_config, PRE_KERNEL_1, \
CONFIG_SERIAL_INIT_PRIORITY, \
&usart_sam_driver_api); \
\
USART_SAM_CONFIG_FUNC(n) \
\
USART_SAM_INIT_CFG(n);
DT_INST_FOREACH_STATUS_OKAY(USART_SAM_INIT)