zephyr/drivers/audio/tlv320dac310x.c

523 lines
14 KiB
C

/*
* Copyright (c) 2019 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT ti_tlv320dac
#include <errno.h>
#include <zephyr/sys/util.h>
#include <zephyr/device.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/sys/util.h>
#include <zephyr/audio/codec.h>
#include "tlv320dac310x.h"
#define LOG_LEVEL CONFIG_AUDIO_CODEC_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(tlv320dac310x);
#define CODEC_OUTPUT_VOLUME_MAX 0
#define CODEC_OUTPUT_VOLUME_MIN (-78 * 2)
struct codec_driver_config {
struct i2c_dt_spec bus;
struct gpio_dt_spec reset_gpio;
};
struct codec_driver_data {
struct reg_addr reg_addr_cache;
};
static struct codec_driver_config codec_device_config = {
.bus = I2C_DT_SPEC_INST_GET(0),
.reset_gpio = GPIO_DT_SPEC_INST_GET(0, reset_gpios),
};
static struct codec_driver_data codec_device_data;
static void codec_write_reg(const struct device *dev, struct reg_addr reg,
uint8_t val);
static void codec_read_reg(const struct device *dev, struct reg_addr reg,
uint8_t *val);
static void codec_soft_reset(const struct device *dev);
static int codec_configure_dai(const struct device *dev, audio_dai_cfg_t *cfg);
static int codec_configure_clocks(const struct device *dev,
struct audio_codec_cfg *cfg);
static int codec_configure_filters(const struct device *dev,
audio_dai_cfg_t *cfg);
static enum osr_multiple codec_get_osr_multiple(audio_dai_cfg_t *cfg);
static void codec_configure_output(const struct device *dev);
static int codec_set_output_volume(const struct device *dev, int vol);
#if (LOG_LEVEL >= LOG_LEVEL_DEBUG)
static void codec_read_all_regs(const struct device *dev);
#define CODEC_DUMP_REGS(dev) codec_read_all_regs((dev))
#else
#define CODEC_DUMP_REGS(dev)
#endif
static int codec_initialize(const struct device *dev)
{
const struct codec_driver_config *const dev_cfg = dev->config;
if (!device_is_ready(dev_cfg->bus.bus)) {
LOG_ERR("I2C device not ready");
return -ENODEV;
}
if (!gpio_is_ready_dt(&dev_cfg->reset_gpio)) {
LOG_ERR("GPIO device not ready");
return -ENODEV;
}
return 0;
}
static int codec_configure(const struct device *dev,
struct audio_codec_cfg *cfg)
{
const struct codec_driver_config *const dev_cfg = dev->config;
int ret;
if (cfg->dai_type != AUDIO_DAI_TYPE_I2S) {
LOG_ERR("dai_type must be AUDIO_DAI_TYPE_I2S");
return -EINVAL;
}
/* Configure reset GPIO, and set the line to inactive, which will also
* de-assert the reset line and thus enable the codec.
*/
gpio_pin_configure_dt(&dev_cfg->reset_gpio, GPIO_OUTPUT_INACTIVE);
codec_soft_reset(dev);
ret = codec_configure_clocks(dev, cfg);
if (ret == 0) {
ret = codec_configure_dai(dev, &cfg->dai_cfg);
}
if (ret == 0) {
ret = codec_configure_filters(dev, &cfg->dai_cfg);
}
codec_configure_output(dev);
return ret;
}
static void codec_start_output(const struct device *dev)
{
/* powerup DAC channels */
codec_write_reg(dev, DATA_PATH_SETUP_ADDR, DAC_LR_POWERUP_DEFAULT);
/* unmute DAC channels */
codec_write_reg(dev, VOL_CTRL_ADDR, VOL_CTRL_UNMUTE_DEFAULT);
CODEC_DUMP_REGS(dev);
}
static void codec_stop_output(const struct device *dev)
{
/* mute DAC channels */
codec_write_reg(dev, VOL_CTRL_ADDR, VOL_CTRL_MUTE_DEFAULT);
/* powerdown DAC channels */
codec_write_reg(dev, DATA_PATH_SETUP_ADDR, DAC_LR_POWERDN_DEFAULT);
}
static void codec_mute_output(const struct device *dev)
{
/* mute DAC channels */
codec_write_reg(dev, VOL_CTRL_ADDR, VOL_CTRL_MUTE_DEFAULT);
}
static void codec_unmute_output(const struct device *dev)
{
/* unmute DAC channels */
codec_write_reg(dev, VOL_CTRL_ADDR, VOL_CTRL_UNMUTE_DEFAULT);
}
static int codec_set_property(const struct device *dev,
audio_property_t property,
audio_channel_t channel,
audio_property_value_t val)
{
/* individual channel control not currently supported */
if (channel != AUDIO_CHANNEL_ALL) {
LOG_ERR("channel %u invalid. must be AUDIO_CHANNEL_ALL",
channel);
return -EINVAL;
}
switch (property) {
case AUDIO_PROPERTY_OUTPUT_VOLUME:
return codec_set_output_volume(dev, val.vol);
case AUDIO_PROPERTY_OUTPUT_MUTE:
if (val.mute) {
codec_mute_output(dev);
} else {
codec_unmute_output(dev);
}
return 0;
default:
break;
}
return -EINVAL;
}
static int codec_apply_properties(const struct device *dev)
{
/* nothing to do because there is nothing cached */
return 0;
}
static void codec_write_reg(const struct device *dev, struct reg_addr reg,
uint8_t val)
{
struct codec_driver_data *const dev_data = dev->data;
const struct codec_driver_config *const dev_cfg = dev->config;
/* set page if different */
if (dev_data->reg_addr_cache.page != reg.page) {
i2c_reg_write_byte_dt(&dev_cfg->bus, 0, reg.page);
dev_data->reg_addr_cache.page = reg.page;
}
i2c_reg_write_byte_dt(&dev_cfg->bus, reg.reg_addr, val);
LOG_DBG("WR PG:%u REG:%02u VAL:0x%02x",
reg.page, reg.reg_addr, val);
}
static void codec_read_reg(const struct device *dev, struct reg_addr reg,
uint8_t *val)
{
struct codec_driver_data *const dev_data = dev->data;
const struct codec_driver_config *const dev_cfg = dev->config;
/* set page if different */
if (dev_data->reg_addr_cache.page != reg.page) {
i2c_reg_write_byte_dt(&dev_cfg->bus, 0, reg.page);
dev_data->reg_addr_cache.page = reg.page;
}
i2c_reg_read_byte_dt(&dev_cfg->bus, reg.reg_addr, val);
LOG_DBG("RD PG:%u REG:%02u VAL:0x%02x",
reg.page, reg.reg_addr, *val);
}
static void codec_soft_reset(const struct device *dev)
{
/* soft reset the DAC */
codec_write_reg(dev, SOFT_RESET_ADDR, SOFT_RESET_ASSERT);
}
static int codec_configure_dai(const struct device *dev, audio_dai_cfg_t *cfg)
{
uint8_t val;
/* configure I2S interface */
val = IF_CTRL_IFTYPE(IF_CTRL_IFTYPE_I2S);
if (cfg->i2s.options & I2S_OPT_BIT_CLK_MASTER) {
val |= IF_CTRL_BCLK_OUT;
}
if (cfg->i2s.options & I2S_OPT_FRAME_CLK_MASTER) {
val |= IF_CTRL_WCLK_OUT;
}
switch (cfg->i2s.word_size) {
case AUDIO_PCM_WIDTH_16_BITS:
val |= IF_CTRL_WLEN(IF_CTRL_WLEN_16);
break;
case AUDIO_PCM_WIDTH_20_BITS:
val |= IF_CTRL_WLEN(IF_CTRL_WLEN_20);
break;
case AUDIO_PCM_WIDTH_24_BITS:
val |= IF_CTRL_WLEN(IF_CTRL_WLEN_24);
break;
case AUDIO_PCM_WIDTH_32_BITS:
val |= IF_CTRL_WLEN(IF_CTRL_WLEN_32);
break;
default:
LOG_ERR("Unsupported PCM sample bit width %u",
cfg->i2s.word_size);
return -EINVAL;
}
codec_write_reg(dev, IF_CTRL1_ADDR, val);
return 0;
}
static int codec_configure_clocks(const struct device *dev,
struct audio_codec_cfg *cfg)
{
int dac_clk, mod_clk;
struct i2s_config *i2s;
int osr, osr_min, osr_max;
enum osr_multiple osr_multiple;
int mdac, ndac, bclk_div, mclk_div;
i2s = &cfg->dai_cfg.i2s;
LOG_DBG("MCLK %u Hz PCM Rate: %u Hz", cfg->mclk_freq,
i2s->frame_clk_freq);
if (cfg->mclk_freq <= DAC_PROC_CLK_FREQ_MAX) {
/* use MCLK frequency as the DAC processing clock */
ndac = 1;
} else {
ndac = cfg->mclk_freq / DAC_PROC_CLK_FREQ_MAX;
}
dac_clk = cfg->mclk_freq / ndac;
/* determine OSR Multiple based on PCM rate */
osr_multiple = codec_get_osr_multiple(&cfg->dai_cfg);
/*
* calculate MOD clock such that it is an integer multiple of
* cfg->i2s.frame_clk_freq and
* DAC_MOD_CLK_FREQ_MIN <= MOD clock <= DAC_MOD_CLK_FREQ_MAX
*/
osr_min = (DAC_MOD_CLK_FREQ_MIN + i2s->frame_clk_freq - 1) /
i2s->frame_clk_freq;
osr_max = DAC_MOD_CLK_FREQ_MAX / i2s->frame_clk_freq;
/* round mix and max values to the required multiple */
osr_max = (osr_max / osr_multiple) * osr_multiple;
osr_min = DIV_ROUND_UP(osr_min, osr_multiple);
osr = osr_max;
while (osr >= osr_min) {
mod_clk = i2s->frame_clk_freq * osr;
/* calculate mdac */
mdac = dac_clk / mod_clk;
/* check if mdac is an integer */
if ((mdac * mod_clk) == dac_clk) {
/* found suitable dividers */
break;
}
osr -= osr_multiple;
}
/* check if suitable value was found */
if (osr < osr_min) {
LOG_ERR("Unable to find suitable mdac and osr values");
return -EINVAL;
}
LOG_DBG("Processing freq: %u Hz Modulator freq: %u Hz",
dac_clk, mod_clk);
LOG_DBG("NDAC: %u MDAC: %u OSR: %u", ndac, mdac, osr);
if (i2s->options & I2S_OPT_BIT_CLK_MASTER) {
bclk_div = osr * mdac / (i2s->word_size * 2U); /* stereo */
if ((bclk_div * i2s->word_size * 2) != (osr * mdac)) {
LOG_ERR("Unable to generate BCLK %u from MCLK %u",
i2s->frame_clk_freq * i2s->word_size * 2U,
cfg->mclk_freq);
return -EINVAL;
}
LOG_DBG("I2S Master BCLKDIV: %u", bclk_div);
codec_write_reg(dev, BCLK_DIV_ADDR,
BCLK_DIV_POWER_UP | BCLK_DIV(bclk_div));
}
/* set NDAC, then MDAC, followed by OSR */
codec_write_reg(dev, NDAC_DIV_ADDR,
(uint8_t)(NDAC_DIV(ndac) | NDAC_POWER_UP_MASK));
codec_write_reg(dev, MDAC_DIV_ADDR,
(uint8_t)(MDAC_DIV(mdac) | MDAC_POWER_UP_MASK));
codec_write_reg(dev, OSR_MSB_ADDR, (uint8_t)((osr >> 8) & OSR_MSB_MASK));
codec_write_reg(dev, OSR_LSB_ADDR, (uint8_t)(osr & OSR_LSB_MASK));
if (i2s->options & I2S_OPT_BIT_CLK_MASTER) {
codec_write_reg(dev, BCLK_DIV_ADDR,
BCLK_DIV(bclk_div) | BCLK_DIV_POWER_UP);
}
/* calculate MCLK divider to get ~1MHz */
mclk_div = DIV_ROUND_UP(cfg->mclk_freq, 1000000);
/* setup timer clock to be MCLK divided */
codec_write_reg(dev, TIMER_MCLK_DIV_ADDR,
TIMER_MCLK_DIV_EN_EXT | TIMER_MCLK_DIV_VAL(mclk_div));
LOG_DBG("Timer MCLK Divider: %u", mclk_div);
return 0;
}
static int codec_configure_filters(const struct device *dev,
audio_dai_cfg_t *cfg)
{
enum proc_block proc_blk;
/* determine decimation filter type */
if (cfg->i2s.frame_clk_freq >= AUDIO_PCM_RATE_192K) {
proc_blk = PRB_P18_DECIMATION_C;
LOG_INF("PCM Rate: %u Filter C PRB P18 selected",
cfg->i2s.frame_clk_freq);
} else if (cfg->i2s.frame_clk_freq >= AUDIO_PCM_RATE_96K) {
proc_blk = PRB_P10_DECIMATION_B;
LOG_INF("PCM Rate: %u Filter B PRB P10 selected",
cfg->i2s.frame_clk_freq);
} else {
proc_blk = PRB_P25_DECIMATION_A;
LOG_INF("PCM Rate: %u Filter A PRB P25 selected",
cfg->i2s.frame_clk_freq);
}
codec_write_reg(dev, PROC_BLK_SEL_ADDR, PROC_BLK_SEL(proc_blk));
return 0;
}
static enum osr_multiple codec_get_osr_multiple(audio_dai_cfg_t *cfg)
{
enum osr_multiple osr;
if (cfg->i2s.frame_clk_freq >= AUDIO_PCM_RATE_192K) {
osr = OSR_MULTIPLE_2;
} else if (cfg->i2s.frame_clk_freq >= AUDIO_PCM_RATE_96K) {
osr = OSR_MULTIPLE_4;
} else {
osr = OSR_MULTIPLE_8;
}
LOG_INF("PCM Rate: %u OSR Multiple: %u", cfg->i2s.frame_clk_freq,
osr);
return osr;
}
static void codec_configure_output(const struct device *dev)
{
uint8_t val;
/*
* set common mode voltage to 1.65V (half of AVDD)
* AVDD is typically 3.3V
*/
codec_read_reg(dev, HEADPHONE_DRV_ADDR, &val);
val &= ~HEADPHONE_DRV_CM_MASK;
val |= HEADPHONE_DRV_CM(CM_VOLTAGE_1P65) | HEADPHONE_DRV_RESERVED;
codec_write_reg(dev, HEADPHONE_DRV_ADDR, val);
/* enable pop removal on power down/up */
codec_read_reg(dev, HP_OUT_POP_RM_ADDR, &val);
codec_write_reg(dev, HP_OUT_POP_RM_ADDR, val | HP_OUT_POP_RM_ENABLE);
/* route DAC output to Headphone */
val = OUTPUT_ROUTING_HPL | OUTPUT_ROUTING_HPR;
codec_write_reg(dev, OUTPUT_ROUTING_ADDR, val);
/* enable volume control on Headphone out */
codec_write_reg(dev, HPL_ANA_VOL_CTRL_ADDR,
HPX_ANA_VOL(HPX_ANA_VOL_DEFAULT));
codec_write_reg(dev, HPR_ANA_VOL_CTRL_ADDR,
HPX_ANA_VOL(HPX_ANA_VOL_DEFAULT));
/* set headphone outputs as line-out */
codec_write_reg(dev, HEADPHONE_DRV_CTRL_ADDR, HEADPHONE_DRV_LINEOUT);
/* unmute headphone drivers */
codec_write_reg(dev, HPL_DRV_GAIN_CTRL_ADDR, HPX_DRV_UNMUTE);
codec_write_reg(dev, HPR_DRV_GAIN_CTRL_ADDR, HPX_DRV_UNMUTE);
/* power up headphone drivers */
codec_read_reg(dev, HEADPHONE_DRV_ADDR, &val);
val |= HEADPHONE_DRV_POWERUP | HEADPHONE_DRV_RESERVED;
codec_write_reg(dev, HEADPHONE_DRV_ADDR, val);
}
static int codec_set_output_volume(const struct device *dev, int vol)
{
uint8_t vol_val;
int vol_index;
uint8_t vol_array[] = {
107, 108, 110, 113, 116, 120, 125, 128, 132, 138, 144
};
if ((vol > CODEC_OUTPUT_VOLUME_MAX) ||
(vol < CODEC_OUTPUT_VOLUME_MIN)) {
LOG_ERR("Invalid volume %d.%d dB",
vol >> 1, ((uint32_t)vol & 1) ? 5 : 0);
return -EINVAL;
}
/* remove sign */
vol = -vol;
/* if volume is near floor, set minimum */
if (vol > HPX_ANA_VOL_FLOOR) {
vol_val = HPX_ANA_VOL_FLOOR;
} else if (vol > HPX_ANA_VOL_LOW_THRESH) {
/* lookup low volume values */
for (vol_index = 0; vol_index < ARRAY_SIZE(vol_array); vol_index++) {
if (vol_array[vol_index] >= vol) {
break;
}
}
vol_val = HPX_ANA_VOL_LOW_THRESH + vol_index + 1;
} else {
vol_val = (uint8_t)vol;
}
codec_write_reg(dev, HPL_ANA_VOL_CTRL_ADDR, HPX_ANA_VOL(vol_val));
codec_write_reg(dev, HPR_ANA_VOL_CTRL_ADDR, HPX_ANA_VOL(vol_val));
return 0;
}
#if (LOG_LEVEL >= LOG_LEVEL_DEBUG)
static void codec_read_all_regs(const struct device *dev)
{
uint8_t val;
codec_read_reg(dev, SOFT_RESET_ADDR, &val);
codec_read_reg(dev, NDAC_DIV_ADDR, &val);
codec_read_reg(dev, MDAC_DIV_ADDR, &val);
codec_read_reg(dev, OSR_MSB_ADDR, &val);
codec_read_reg(dev, OSR_LSB_ADDR, &val);
codec_read_reg(dev, IF_CTRL1_ADDR, &val);
codec_read_reg(dev, BCLK_DIV_ADDR, &val);
codec_read_reg(dev, OVF_FLAG_ADDR, &val);
codec_read_reg(dev, PROC_BLK_SEL_ADDR, &val);
codec_read_reg(dev, DATA_PATH_SETUP_ADDR, &val);
codec_read_reg(dev, VOL_CTRL_ADDR, &val);
codec_read_reg(dev, L_DIG_VOL_CTRL_ADDR, &val);
codec_read_reg(dev, DRC_CTRL1_ADDR, &val);
codec_read_reg(dev, L_BEEP_GEN_ADDR, &val);
codec_read_reg(dev, R_BEEP_GEN_ADDR, &val);
codec_read_reg(dev, BEEP_LEN_MSB_ADDR, &val);
codec_read_reg(dev, BEEP_LEN_MIB_ADDR, &val);
codec_read_reg(dev, BEEP_LEN_LSB_ADDR, &val);
codec_read_reg(dev, HEADPHONE_DRV_ADDR, &val);
codec_read_reg(dev, HP_OUT_POP_RM_ADDR, &val);
codec_read_reg(dev, OUTPUT_ROUTING_ADDR, &val);
codec_read_reg(dev, HPL_ANA_VOL_CTRL_ADDR, &val);
codec_read_reg(dev, HPR_ANA_VOL_CTRL_ADDR, &val);
codec_read_reg(dev, HPL_DRV_GAIN_CTRL_ADDR, &val);
codec_read_reg(dev, HPR_DRV_GAIN_CTRL_ADDR, &val);
codec_read_reg(dev, HEADPHONE_DRV_CTRL_ADDR, &val);
codec_read_reg(dev, TIMER_MCLK_DIV_ADDR, &val);
}
#endif
static const struct audio_codec_api codec_driver_api = {
.configure = codec_configure,
.start_output = codec_start_output,
.stop_output = codec_stop_output,
.set_property = codec_set_property,
.apply_properties = codec_apply_properties,
};
DEVICE_DT_INST_DEFINE(0, codec_initialize, NULL, &codec_device_data,
&codec_device_config, POST_KERNEL,
CONFIG_AUDIO_CODEC_INIT_PRIORITY, &codec_driver_api);