zephyr/subsys/bluetooth/host/hci_ecc.c

324 lines
7.4 KiB
C

/**
* @file hci_ecc.c
* HCI ECC emulation
*/
/*
* Copyright (c) 2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr.h>
#include <atomic.h>
#include <misc/stack.h>
#include <misc/byteorder.h>
#include <tinycrypt/constants.h>
#include <tinycrypt/utils.h>
#include <tinycrypt/ecc.h>
#include <tinycrypt/ecc_dh.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/conn.h>
#include <bluetooth/hci.h>
#include <bluetooth/hci_driver.h>
#define BT_DBG_ENABLED IS_ENABLED(CONFIG_BT_DEBUG_HCI_CORE)
#include "common/log.h"
#include "hci_ecc.h"
#ifdef CONFIG_BT_HCI_RAW
#include <bluetooth/hci_raw.h>
#include "hci_raw_internal.h"
#else
#include "hci_core.h"
#endif
static struct k_thread ecc_thread_data;
static BT_STACK_NOINIT(ecc_thread_stack, 1024);
/* based on Core Specification 4.2 Vol 3. Part H 2.3.5.6.1 */
static const u32_t debug_private_key[8] = {
0xcd3c1abd, 0x5899b8a6, 0xeb40b799, 0x4aff607b, 0xd2103f50, 0x74c9b3e3,
0xa3c55f38, 0x3f49f6d4
};
#if defined(CONFIG_BT_USE_DEBUG_KEYS)
static const u8_t debug_public_key[64] = {
0xe6, 0x9d, 0x35, 0x0e, 0x48, 0x01, 0x03, 0xcc, 0xdb, 0xfd, 0xf4, 0xac,
0x11, 0x91, 0xf4, 0xef, 0xb9, 0xa5, 0xf9, 0xe9, 0xa7, 0x83, 0x2c, 0x5e,
0x2c, 0xbe, 0x97, 0xf2, 0xd2, 0x03, 0xb0, 0x20, 0x8b, 0xd2, 0x89, 0x15,
0xd0, 0x8e, 0x1c, 0x74, 0x24, 0x30, 0xed, 0x8f, 0xc2, 0x45, 0x63, 0x76,
0x5c, 0x15, 0x52, 0x5a, 0xbf, 0x9a, 0x32, 0x63, 0x6d, 0xeb, 0x2a, 0x65,
0x49, 0x9c, 0x80, 0xdc
};
#endif
enum {
PENDING_PUB_KEY,
PENDING_DHKEY,
/* Total number of flags - must be at the end of the enum */
NUM_FLAGS,
};
static ATOMIC_DEFINE(flags, NUM_FLAGS);
static K_SEM_DEFINE(cmd_sem, 0, 1);
static struct {
u8_t private_key[32];
union {
u8_t pk[64];
u8_t dhkey[32];
};
} ecc;
static void send_cmd_status(u16_t opcode, u8_t status)
{
struct bt_hci_evt_cmd_status *evt;
struct bt_hci_evt_hdr *hdr;
struct net_buf *buf;
BT_DBG("opcode %x status %x", opcode, status);
buf = bt_buf_get_cmd_complete(K_FOREVER);
bt_buf_set_type(buf, BT_BUF_EVT);
hdr = net_buf_add(buf, sizeof(*hdr));
hdr->evt = BT_HCI_EVT_CMD_STATUS;
hdr->len = sizeof(*evt);
evt = net_buf_add(buf, sizeof(*evt));
evt->ncmd = 1;
evt->opcode = sys_cpu_to_le16(opcode);
evt->status = status;
bt_recv_prio(buf);
}
static u8_t generate_keys(void)
{
#if !defined(CONFIG_BT_USE_DEBUG_KEYS)
do {
int rc;
rc = uECC_make_key(ecc.pk, ecc.private_key, &curve_secp256r1);
if (rc == TC_CRYPTO_FAIL) {
BT_ERR("Failed to create ECC public/private pair");
return BT_HCI_ERR_UNSPECIFIED;
}
/* make sure generated key isn't debug key */
} while (memcmp(ecc.private_key, debug_private_key, 32) == 0);
#else
memcpy(&ecc.pk, debug_public_key, 64);
memcpy(ecc.private_key, debug_private_key, 32);
#endif
return 0;
}
static void emulate_le_p256_public_key_cmd(void)
{
struct bt_hci_evt_le_p256_public_key_complete *evt;
struct bt_hci_evt_le_meta_event *meta;
struct bt_hci_evt_hdr *hdr;
struct net_buf *buf;
u8_t status;
BT_DBG("");
status = generate_keys();
buf = bt_buf_get_rx(BT_BUF_EVT, K_FOREVER);
hdr = net_buf_add(buf, sizeof(*hdr));
hdr->evt = BT_HCI_EVT_LE_META_EVENT;
hdr->len = sizeof(*meta) + sizeof(*evt);
meta = net_buf_add(buf, sizeof(*meta));
meta->subevent = BT_HCI_EVT_LE_P256_PUBLIC_KEY_COMPLETE;
evt = net_buf_add(buf, sizeof(*evt));
evt->status = status;
if (status) {
memset(evt->key, 0, sizeof(evt->key));
} else {
/* Convert X and Y coordinates from big-endian (provided
* by crypto API) to little endian HCI.
*/
sys_memcpy_swap(evt->key, ecc.pk, 32);
sys_memcpy_swap(&evt->key[32], &ecc.pk[32], 32);
}
atomic_clear_bit(flags, PENDING_PUB_KEY);
bt_recv(buf);
}
static void emulate_le_generate_dhkey(void)
{
struct bt_hci_evt_le_generate_dhkey_complete *evt;
struct bt_hci_evt_le_meta_event *meta;
struct bt_hci_evt_hdr *hdr;
struct net_buf *buf;
int ret;
ret = uECC_valid_public_key(ecc.pk, &curve_secp256r1);
if (ret < 0) {
BT_ERR("public key is not valid (ret %d)", ret);
ret = TC_CRYPTO_FAIL;
} else {
ret = uECC_shared_secret(ecc.pk, ecc.private_key, ecc.dhkey,
&curve_secp256r1);
}
buf = bt_buf_get_rx(BT_BUF_EVT, K_FOREVER);
hdr = net_buf_add(buf, sizeof(*hdr));
hdr->evt = BT_HCI_EVT_LE_META_EVENT;
hdr->len = sizeof(*meta) + sizeof(*evt);
meta = net_buf_add(buf, sizeof(*meta));
meta->subevent = BT_HCI_EVT_LE_GENERATE_DHKEY_COMPLETE;
evt = net_buf_add(buf, sizeof(*evt));
if (ret == TC_CRYPTO_FAIL) {
evt->status = BT_HCI_ERR_UNSPECIFIED;
memset(evt->dhkey, 0, sizeof(evt->dhkey));
} else {
evt->status = 0;
/* Convert from big-endian (provided by crypto API) to
* little-endian HCI.
*/
sys_memcpy_swap(evt->dhkey, ecc.dhkey, sizeof(ecc.dhkey));
}
atomic_clear_bit(flags, PENDING_DHKEY);
bt_recv(buf);
}
static void ecc_thread(void *p1, void *p2, void *p3)
{
while (true) {
k_sem_take(&cmd_sem, K_FOREVER);
if (atomic_test_bit(flags, PENDING_PUB_KEY)) {
emulate_le_p256_public_key_cmd();
} else if (atomic_test_bit(flags, PENDING_DHKEY)) {
emulate_le_generate_dhkey();
} else {
__ASSERT(0, "Unhandled ECC command");
}
STACK_ANALYZE("ecc stack", ecc_thread_stack);
}
}
static void clear_ecc_events(struct net_buf *buf)
{
struct bt_hci_cp_le_set_event_mask *cmd;
cmd = (void *)buf->data + sizeof(struct bt_hci_cmd_hdr);
/*
* don't enable controller ECC events as those will be generated from
* emulation code
*/
cmd->events[0] &= ~0x80; /* LE Read Local P-256 PKey Compl */
cmd->events[1] &= ~0x01; /* LE Generate DHKey Compl Event */
}
static void le_gen_dhkey(struct net_buf *buf)
{
struct bt_hci_cp_le_generate_dhkey *cmd;
u8_t status;
if (atomic_test_bit(flags, PENDING_PUB_KEY)) {
status = BT_HCI_ERR_CMD_DISALLOWED;
goto send_status;
}
if (buf->len < sizeof(struct bt_hci_cp_le_generate_dhkey)) {
status = BT_HCI_ERR_INVALID_PARAM;
goto send_status;
}
if (atomic_test_and_set_bit(flags, PENDING_DHKEY)) {
status = BT_HCI_ERR_CMD_DISALLOWED;
goto send_status;
}
cmd = (void *)buf->data;
/* Convert X and Y coordinates from little-endian HCI to
* big-endian (expected by the crypto API).
*/
sys_memcpy_swap(ecc.pk, cmd->key, 32);
sys_memcpy_swap(&ecc.pk[32], &cmd->key[32], 32);
k_sem_give(&cmd_sem);
status = BT_HCI_ERR_SUCCESS;
send_status:
net_buf_unref(buf);
send_cmd_status(BT_HCI_OP_LE_GENERATE_DHKEY, status);
}
static void le_p256_pub_key(struct net_buf *buf)
{
u8_t status;
net_buf_unref(buf);
if (atomic_test_bit(flags, PENDING_DHKEY)) {
status = BT_HCI_ERR_CMD_DISALLOWED;
} else if (atomic_test_and_set_bit(flags, PENDING_PUB_KEY)) {
status = BT_HCI_ERR_CMD_DISALLOWED;
} else {
k_sem_give(&cmd_sem);
status = BT_HCI_ERR_SUCCESS;
}
send_cmd_status(BT_HCI_OP_LE_P256_PUBLIC_KEY, status);
}
int bt_hci_ecc_send(struct net_buf *buf)
{
if (bt_buf_get_type(buf) == BT_BUF_CMD) {
struct bt_hci_cmd_hdr *chdr = (void *)buf->data;
switch (sys_le16_to_cpu(chdr->opcode)) {
case BT_HCI_OP_LE_P256_PUBLIC_KEY:
net_buf_pull(buf, sizeof(*chdr));
le_p256_pub_key(buf);
return 0;
case BT_HCI_OP_LE_GENERATE_DHKEY:
net_buf_pull(buf, sizeof(*chdr));
le_gen_dhkey(buf);
return 0;
case BT_HCI_OP_LE_SET_EVENT_MASK:
clear_ecc_events(buf);
break;
default:
break;
}
}
return bt_dev.drv->send(buf);
}
int default_CSPRNG(u8_t *dst, unsigned int len)
{
return !bt_rand(dst, len);
}
void bt_hci_ecc_init(void)
{
k_thread_create(&ecc_thread_data, ecc_thread_stack,
K_THREAD_STACK_SIZEOF(ecc_thread_stack), ecc_thread,
NULL, NULL, NULL, K_PRIO_PREEMPT(10), 0, K_NO_WAIT);
}