162 lines
4.7 KiB
C
162 lines
4.7 KiB
C
/*
|
|
* Copyright (c) 2017, 2023 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <string.h>
|
|
|
|
#include <zephyr/kernel.h>
|
|
#include <kernel_internal.h>
|
|
|
|
#include <xtensa_asm2_context.h>
|
|
#include <xtensa_internal.h>
|
|
|
|
#include <zephyr/logging/log.h>
|
|
LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
|
|
#ifdef CONFIG_THREAD_LOCAL_STORAGE
|
|
/*
|
|
* Per-thread (TLS) variable indicating whether execution is in user mode.
|
|
*/
|
|
__thread uint32_t is_user_mode;
|
|
#endif
|
|
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
/**
|
|
* Initializes a stack area such that it can be "restored" later and
|
|
* begin running with the specified function and three arguments. The
|
|
* entry function takes three arguments to match the signature of
|
|
* Zephyr's k_thread_entry_t. Thread will start with EXCM clear and
|
|
* INTLEVEL set to zero (i.e. it's a user thread, we don't start with
|
|
* anything masked, so don't assume that!).
|
|
*/
|
|
static void *init_stack(struct k_thread *thread, int *stack_top,
|
|
void (*entry)(void *, void *, void *),
|
|
void *arg1, void *arg2, void *arg3)
|
|
{
|
|
void *ret;
|
|
_xtensa_irq_stack_frame_a11_t *frame;
|
|
#ifdef CONFIG_USERSPACE
|
|
struct xtensa_thread_stack_header *header =
|
|
(struct xtensa_thread_stack_header *)thread->stack_obj;
|
|
|
|
thread->arch.psp = header->privilege_stack +
|
|
sizeof(header->privilege_stack);
|
|
#endif
|
|
|
|
/* Not-a-cpu ID Ensures that the first time this is run, the
|
|
* stack will be invalidated. That covers the edge case of
|
|
* restarting a thread on a stack that had previously been run
|
|
* on one CPU, but then initialized on this one, and
|
|
* potentially run THERE and not HERE.
|
|
*/
|
|
thread->arch.last_cpu = -1;
|
|
|
|
/* We cheat and shave 16 bytes off, the top four words are the
|
|
* A0-A3 spill area for the caller of the entry function,
|
|
* which doesn't exist. It will never be touched, so we
|
|
* arrange to enter the function with a CALLINC of 1 and a
|
|
* stack pointer 16 bytes above the top, so its ENTRY at the
|
|
* start will decrement the stack pointer by 16.
|
|
*/
|
|
const int bsasz = sizeof(*frame) - 16;
|
|
|
|
frame = (void *)(((char *) stack_top) - bsasz);
|
|
|
|
(void)memset(frame, 0, bsasz);
|
|
|
|
frame->bsa.ps = PS_WOE | PS_UM | PS_CALLINC(1);
|
|
#ifdef CONFIG_USERSPACE
|
|
if ((thread->base.user_options & K_USER) == K_USER) {
|
|
frame->bsa.pc = (uintptr_t)arch_user_mode_enter;
|
|
} else {
|
|
frame->bsa.pc = (uintptr_t)z_thread_entry;
|
|
}
|
|
#else
|
|
frame->bsa.pc = (uintptr_t)z_thread_entry;
|
|
#endif
|
|
|
|
#if XCHAL_HAVE_THREADPTR
|
|
#ifdef CONFIG_THREAD_LOCAL_STORAGE
|
|
frame->bsa.threadptr = thread->tls;
|
|
#elif CONFIG_USERSPACE
|
|
frame->bsa.threadptr = (uintptr_t)((thread->base.user_options & K_USER) ? thread : NULL);
|
|
#endif
|
|
#endif
|
|
|
|
/* Arguments to z_thread_entry(). Remember these start at A6,
|
|
* which will be rotated into A2 by the ENTRY instruction that
|
|
* begins the C function. And A4-A7 and A8-A11 are optional
|
|
* quads that live below the BSA!
|
|
*/
|
|
frame->a7 = (uintptr_t)arg1; /* a7 */
|
|
frame->a6 = (uintptr_t)entry; /* a6 */
|
|
frame->a5 = 0; /* a5 */
|
|
frame->a4 = 0; /* a4 */
|
|
|
|
frame->a11 = 0; /* a11 */
|
|
frame->a10 = 0; /* a10 */
|
|
frame->a9 = (uintptr_t)arg3; /* a9 */
|
|
frame->a8 = (uintptr_t)arg2; /* a8 */
|
|
|
|
/* Finally push the BSA pointer and return the stack pointer
|
|
* as the handle
|
|
*/
|
|
frame->ptr_to_bsa = (void *)&frame->bsa;
|
|
ret = &frame->ptr_to_bsa;
|
|
|
|
return ret;
|
|
}
|
|
|
|
void arch_new_thread(struct k_thread *thread, k_thread_stack_t *stack,
|
|
char *stack_ptr, k_thread_entry_t entry,
|
|
void *p1, void *p2, void *p3)
|
|
{
|
|
thread->switch_handle = init_stack(thread, (int *)stack_ptr, entry,
|
|
p1, p2, p3);
|
|
#ifdef CONFIG_KERNEL_COHERENCE
|
|
__ASSERT((((size_t)stack) % XCHAL_DCACHE_LINESIZE) == 0, "");
|
|
__ASSERT((((size_t)stack_ptr) % XCHAL_DCACHE_LINESIZE) == 0, "");
|
|
sys_cache_data_flush_and_invd_range(stack, (char *)stack_ptr - (char *)stack);
|
|
#endif
|
|
}
|
|
|
|
#if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING)
|
|
int arch_float_disable(struct k_thread *thread)
|
|
{
|
|
/* xtensa always has FPU enabled so cannot be disabled */
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
int arch_float_enable(struct k_thread *thread, unsigned int options)
|
|
{
|
|
/* xtensa always has FPU enabled so nothing to do here */
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_FPU && CONFIG_FPU_SHARING */
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
FUNC_NORETURN void arch_user_mode_enter(k_thread_entry_t user_entry,
|
|
void *p1, void *p2, void *p3)
|
|
{
|
|
struct k_thread *current = _current;
|
|
size_t stack_end;
|
|
|
|
/* Transition will reset stack pointer to initial, discarding
|
|
* any old context since this is a one-way operation
|
|
*/
|
|
stack_end = Z_STACK_PTR_ALIGN(current->stack_info.start +
|
|
current->stack_info.size -
|
|
current->stack_info.delta);
|
|
|
|
xtensa_userspace_enter(user_entry, p1, p2, p3,
|
|
stack_end, current->stack_info.start);
|
|
|
|
CODE_UNREACHABLE;
|
|
}
|
|
#endif /* CONFIG_USERSPACE */
|