zephyr/drivers/i2c/i2c_rv32m1_lpi2c.c

314 lines
8.9 KiB
C

/*
* Copyright (c) 2019, Henrik Brix Andersen <henrik@brixandersen.dk>
*
* Based on the i2c_mcux_lpi2c.c driver, which is:
* Copyright (c) 2016 Freescale Semiconductor, Inc.
* Copyright (c) 2019, NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <i2c.h>
#include <clock_control.h>
#include <fsl_lpi2c.h>
#include <logging/log.h>
LOG_MODULE_REGISTER(rv32m1_lpi2c);
#include "i2c-priv.h"
struct rv32m1_lpi2c_config {
LPI2C_Type *base;
char *clock_controller;
clock_control_subsys_t clock_subsys;
clock_ip_name_t clock_ip_name;
u32_t clock_ip_src;
u32_t bitrate;
void (*irq_config_func)(struct device *dev);
};
struct rv32m1_lpi2c_data {
lpi2c_master_handle_t handle;
struct k_sem transfer_sync;
struct k_sem completion_sync;
status_t completion_status;
};
static int rv32m1_lpi2c_configure(struct device *dev, u32_t dev_config)
{
const struct rv32m1_lpi2c_config *config = dev->config->config_info;
struct device *clk;
u32_t baudrate;
u32_t clk_freq;
int err;
if (!(I2C_MODE_MASTER & dev_config)) {
/* Slave mode not supported - yet */
LOG_ERR("Slave mode not supported");
return -ENOTSUP;
}
if (I2C_ADDR_10_BITS & dev_config) {
/* FSL LPI2C driver only supports 7-bit addressing */
LOG_ERR("10 bit addressing not supported");
return -ENOTSUP;
}
switch (I2C_SPEED_GET(dev_config)) {
case I2C_SPEED_STANDARD:
baudrate = KHZ(100);
break;
case I2C_SPEED_FAST:
baudrate = KHZ(400);
break;
case I2C_SPEED_FAST_PLUS:
baudrate = MHZ(1);
break;
/* TODO: only if SCL pin implements current source pull-up */
/* case I2C_SPEED_HIGH: */
/* baudrate = KHZ(3400); */
/* break; */
/* TODO: ultra-fast requires pin_config setting */
/* case I2C_SPEED_ULTRA: */
/* baudrate = MHZ(5); */
/* break; */
default:
LOG_ERR("Unsupported speed");
return -ENOTSUP;
}
clk = device_get_binding(config->clock_controller);
if (!clk) {
LOG_ERR("Could not get clock controller '%s'",
config->clock_controller);
return -EINVAL;
}
err = clock_control_get_rate(clk, config->clock_subsys, &clk_freq);
if (err) {
LOG_ERR("Could not get clock frequency (err %d)", err);
return -EINVAL;
}
LPI2C_MasterSetBaudRate(config->base, clk_freq, baudrate);
return 0;
}
static void rv32m1_lpi2c_master_transfer_callback(LPI2C_Type *base,
lpi2c_master_handle_t *handle,
status_t completionStatus,
void *userData)
{
struct device *dev = userData;
struct rv32m1_lpi2c_data *data = dev->driver_data;
ARG_UNUSED(base);
ARG_UNUSED(handle);
data->completion_status = completionStatus;
k_sem_give(&data->completion_sync);
}
static u32_t rv32m1_lpi2c_convert_flags(int msg_flags)
{
u32_t flags = 0U;
if (!(msg_flags & I2C_MSG_STOP)) {
flags |= kLPI2C_TransferNoStopFlag;
}
if (msg_flags & I2C_MSG_RESTART) {
flags |= kLPI2C_TransferRepeatedStartFlag;
}
return flags;
}
static int rv32m1_lpi2c_transfer(struct device *dev, struct i2c_msg *msgs,
u8_t num_msgs, u16_t addr)
{
const struct rv32m1_lpi2c_config *config = dev->config->config_info;
struct rv32m1_lpi2c_data *data = dev->driver_data;
lpi2c_master_transfer_t transfer;
status_t status;
int ret = 0;
k_sem_take(&data->transfer_sync, K_FOREVER);
/* Iterate over all the messages */
for (int i = 0; i < num_msgs; i++) {
if (I2C_MSG_ADDR_10_BITS & msgs->flags) {
ret = -ENOTSUP;
goto out;
}
/* Initialize the transfer descriptor */
transfer.flags = rv32m1_lpi2c_convert_flags(msgs->flags);
/* Prevent the controller to send a start condition between
* messages, except if explicitly requested.
*/
if (i != 0 && !(msgs->flags & I2C_MSG_RESTART)) {
transfer.flags |= kLPI2C_TransferNoStartFlag;
}
transfer.slaveAddress = addr;
transfer.direction = (msgs->flags & I2C_MSG_READ)
? kLPI2C_Read : kLPI2C_Write;
transfer.subaddress = 0;
transfer.subaddressSize = 0;
transfer.data = msgs->buf;
transfer.dataSize = msgs->len;
/* Start the transfer */
status = LPI2C_MasterTransferNonBlocking(config->base,
&data->handle,
&transfer);
/* Return an error if the transfer didn't start successfully
* e.g., if the bus was busy
*/
if (status != kStatus_Success) {
LOG_DBG("Could not start transfer (status %d)", status);
ret = -EIO;
goto out;
}
/* Wait for the transfer to complete */
k_sem_take(&data->completion_sync, K_FOREVER);
/* Return an error if the transfer didn't complete
* successfully. e.g., nak, timeout, lost arbitration
*/
if (data->completion_status != kStatus_Success) {
LOG_DBG("Transfer failed (status %d)",
data->completion_status);
LPI2C_MasterTransferAbort(config->base, &data->handle);
ret = -EIO;
goto out;
}
/* Move to the next message */
msgs++;
}
out:
k_sem_give(&data->transfer_sync);
return ret;
}
static void rv32m1_lpi2c_isr(void *arg)
{
struct device *dev = (struct device *)arg;
const struct rv32m1_lpi2c_config *config = dev->config->config_info;
struct rv32m1_lpi2c_data *data = dev->driver_data;
LPI2C_MasterTransferHandleIRQ(config->base, &data->handle);
}
static int rv32m1_lpi2c_init(struct device *dev)
{
const struct rv32m1_lpi2c_config *config = dev->config->config_info;
struct rv32m1_lpi2c_data *data = dev->driver_data;
lpi2c_master_config_t master_config;
struct device *clk;
u32_t clk_freq, dev_cfg;
int err;
CLOCK_SetIpSrc(config->clock_ip_name, config->clock_ip_src);
clk = device_get_binding(config->clock_controller);
if (!clk) {
LOG_ERR("Could not get clock controller '%s'",
config->clock_controller);
return -EINVAL;
}
err = clock_control_on(clk, config->clock_subsys);
if (err) {
LOG_ERR("Could not turn on clock (err %d)", err);
return -EINVAL;
}
err = clock_control_get_rate(clk, config->clock_subsys, &clk_freq);
if (err) {
LOG_ERR("Could not get clock frequency (err %d)", err);
return -EINVAL;
}
LPI2C_MasterGetDefaultConfig(&master_config);
LPI2C_MasterInit(config->base, &master_config, clk_freq);
LPI2C_MasterTransferCreateHandle(config->base, &data->handle,
rv32m1_lpi2c_master_transfer_callback,
dev);
dev_cfg = i2c_map_dt_bitrate(config->bitrate);
err = rv32m1_lpi2c_configure(dev, dev_cfg | I2C_MODE_MASTER);
if (err) {
LOG_ERR("Could not configure controller (err %d)", err);
return err;
}
config->irq_config_func(dev);
return 0;
}
static const struct i2c_driver_api rv32m1_lpi2c_driver_api = {
.configure = rv32m1_lpi2c_configure,
.transfer = rv32m1_lpi2c_transfer,
};
#define RV32M1_LPI2C_DEVICE(id) \
static void rv32m1_lpi2c_irq_config_func_##id(struct device *dev); \
static const struct rv32m1_lpi2c_config rv32m1_lpi2c_##id##_config = { \
.base = \
(LPI2C_Type *)DT_OPENISA_RV32M1_LPI2C_I2C_##id##_BASE_ADDRESS, \
.clock_controller = \
DT_OPENISA_RV32M1_LPI2C_I2C_##id##_CLOCK_CONTROLLER, \
.clock_subsys = \
(clock_control_subsys_t) \
DT_OPENISA_RV32M1_LPI2C_I2C_##id##_CLOCK_NAME, \
.clock_ip_name = kCLOCK_Lpi2c##id, \
.clock_ip_src = kCLOCK_IpSrcFircAsync, \
.bitrate = DT_OPENISA_RV32M1_LPI2C_I2C_##id##_CLOCK_FREQUENCY, \
.irq_config_func = rv32m1_lpi2c_irq_config_func_##id, \
}; \
static struct rv32m1_lpi2c_data rv32m1_lpi2c_##id##_data = { \
.transfer_sync = Z_SEM_INITIALIZER( \
rv32m1_lpi2c_##id##_data.transfer_sync, 1, 1), \
.completion_sync = Z_SEM_INITIALIZER( \
rv32m1_lpi2c_##id##_data.completion_sync, 0, 1), \
}; \
DEVICE_AND_API_INIT(rv32m1_lpi2c_##id, \
DT_OPENISA_RV32M1_LPI2C_I2C_##id##_LABEL, \
&rv32m1_lpi2c_init, \
&rv32m1_lpi2c_##id##_data, \
&rv32m1_lpi2c_##id##_config, \
POST_KERNEL, CONFIG_I2C_INIT_PRIORITY, \
&rv32m1_lpi2c_driver_api); \
static void rv32m1_lpi2c_irq_config_func_##id(struct device *dev) \
{ \
IRQ_CONNECT(DT_OPENISA_RV32M1_LPI2C_I2C_##id##_IRQ, \
DT_OPENISA_RV32M1_LPI2C_I2C_##id##_IRQ_PRI, \
rv32m1_lpi2c_isr, DEVICE_GET(rv32m1_lpi2c_##id), \
0); \
irq_enable(DT_OPENISA_RV32M1_LPI2C_I2C_##id##_IRQ); \
} \
#ifdef CONFIG_I2C_0
RV32M1_LPI2C_DEVICE(0)
#endif
#ifdef CONFIG_I2C_1
RV32M1_LPI2C_DEVICE(1)
#endif
#ifdef CONFIG_I2C_2
RV32M1_LPI2C_DEVICE(2)
#endif
#ifdef CONFIG_I2C_3
RV32M1_LPI2C_DEVICE(3)
#endif