zephyr/kernel/microkernel/k_memory_map.c

234 lines
5.4 KiB
C

/* memory map kernel services */
/*
* Copyright (c) 1997-2010, 2013-2014 Wind River Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2) Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3) Neither the name of Wind River Systems nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <micro_private.h>
#include <sections.h>
/**
*
* _k_mem_map_init - initialize kernel memory map subsystem
*
* Perform any initialization of memory maps that wasn't done at build time.
*
* RETURNS: N/A
*/
void _k_mem_map_init(void)
{
int i, j, w;
struct map_struct *M;
for (i = 0, M = _k_mem_map_list; i < _k_mem_map_count; i++, M++) {
char *p;
char *q;
M->Waiters = NULL;
w = OCTET_TO_SIZEOFUNIT(M->Esize);
p = M->Base;
q = NULL;
for (j = 0; j < M->Nelms; j++) {
*(char **)p = q;
q = p;
p += w;
}
M->Free = q;
M->Nused = 0;
M->Hmark = 0;
M->Count = 0;
}
}
/**
*
* _k_mem_map_alloc_timeout - finish handling a memory map block request that timed out
*
* RETURNS: N/A
*/
void _k_mem_map_alloc_timeout(struct k_args *A)
{
_k_timeout_free(A->Time.timer);
REMOVE_ELM(A);
A->Time.rcode = RC_TIME;
_k_state_bit_reset(A->Ctxt.proc, TF_ALLO);
}
/**
*
* _k_mem_map_alloc - perform allocate memory map block request
*
* RETURNS: N/A
*/
void _k_mem_map_alloc(struct k_args *A)
{
struct map_struct *M = _k_mem_map_list + OBJ_INDEX(A->Args.a1.mmap);
if (M->Free != NULL) {
*(A->Args.a1.mptr) = M->Free;
M->Free = *(char **)(M->Free);
M->Nused++;
#ifdef CONFIG_OBJECT_MONITOR
M->Count++;
if (M->Hmark < M->Nused)
M->Hmark = M->Nused;
#endif
A->Time.rcode = RC_OK;
return;
}
*(A->Args.a1.mptr) = NULL;
if (likely(A->Time.ticks != TICKS_NONE)) {
A->Prio = _k_current_task->Prio;
A->Ctxt.proc = _k_current_task;
_k_state_bit_set(_k_current_task, TF_ALLO);
INSERT_ELM(M->Waiters, A);
#ifdef CONFIG_SYS_CLOCK_EXISTS
if (A->Time.ticks == TICKS_UNLIMITED)
A->Time.timer = NULL;
else {
A->Comm = ALLOCTMO;
_k_timeout_alloc(A);
}
#endif
} else
A->Time.rcode = RC_FAIL;
}
/**
*
* _task_mem_map_alloc - allocate memory map block request
*
* This routine is used to request a block of memory from the memory map.
*
* RETURNS: RC_OK, RC_FAIL, RC_TIME on success, error, timeout respectively
*/
int _task_mem_map_alloc(kmemory_map_t mmap, /* memory map from which to request block */
void **mptr, /* pointer to requested block of memory */
int32_t time /* maximum # of ticks for which to wait */
)
{
struct k_args A;
A.Comm = ALLOC;
A.Time.ticks = time;
A.Args.a1.mmap = mmap;
A.Args.a1.mptr = mptr;
KERNEL_ENTRY(&A);
return A.Time.rcode;
}
/**
*
* _k_mem_map_dealloc - perform return memory map block request
*
* RETURNS: N/A
*/
void _k_mem_map_dealloc(struct k_args *A)
{
struct map_struct *M = _k_mem_map_list + OBJ_INDEX(A->Args.a1.mmap);
struct k_args *X;
**(char ***)(A->Args.a1.mptr) = M->Free;
M->Free = *(char **)(A->Args.a1.mptr);
*(A->Args.a1.mptr) = NULL;
X = M->Waiters;
if (X) {
M->Waiters = X->Forw;
*(X->Args.a1.mptr) = M->Free;
M->Free = *(char **)(M->Free);
#ifdef CONFIG_SYS_CLOCK_EXISTS
if (X->Time.timer) {
_k_timeout_free(X->Time.timer);
X->Comm = NOP;
}
#endif
X->Time.rcode = RC_OK;
_k_state_bit_reset(X->Ctxt.proc, TF_ALLO);
#ifdef CONFIG_OBJECT_MONITOR
M->Count++;
#endif
return;
}
M->Nused--;
}
/**
*
* _task_mem_map_free - return memory map block request
*
* This routine returns a block to the specified memory map. If a higher
* priority task is waiting for a block from the same map a task switch
* takes place.
*
* RETURNS: N/A
*/
void _task_mem_map_free(kmemory_map_t mmap, /* memory map */
void **mptr /* block of memory to return */
)
{
struct k_args A;
A.Comm = DEALLOC;
A.Args.a1.mmap = mmap;
A.Args.a1.mptr = mptr;
KERNEL_ENTRY(&A);
}
/**
*
* task_mem_map_used_get - read the number of used blocks in a memory map
*
* This routine returns the number of blocks in use for the memory map.
*
* RETURNS: number of used blocks
*/
int task_mem_map_used_get(kmemory_map_t mmap /* memory map */
)
{
return _k_mem_map_list[OBJ_INDEX(mmap)].Nused;
}