zephyr/subsys/net/lib/zperf/zperf_udp_receiver.c

461 lines
11 KiB
C

/*
* Copyright (c) 2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/logging/log.h>
LOG_MODULE_DECLARE(net_zperf, CONFIG_NET_ZPERF_LOG_LEVEL);
#include <zephyr/linker/sections.h>
#include <zephyr/toolchain.h>
#include <zephyr/kernel.h>
#include <zephyr/net/socket.h>
#include <zephyr/net/zperf.h>
#include "zperf_internal.h"
#include "zperf_session.h"
/* To get net_sprint_ipv{4|6}_addr() */
#define NET_LOG_ENABLED 1
#include "net_private.h"
static struct sockaddr_in6 *in6_addr_my;
static struct sockaddr_in *in4_addr_my;
#if defined(CONFIG_NET_TC_THREAD_COOPERATIVE)
#define UDP_RECEIVER_THREAD_PRIORITY K_PRIO_COOP(8)
#else
#define UDP_RECEIVER_THREAD_PRIORITY K_PRIO_PREEMPT(8)
#endif
#define UDP_RECEIVER_STACK_SIZE 2048
#define SOCK_ID_IPV4 0
#define SOCK_ID_IPV6 1
#define SOCK_ID_MAX 2
#define UDP_RECEIVER_BUF_SIZE 1500
#define POLL_TIMEOUT_MS 100
static K_THREAD_STACK_DEFINE(udp_receiver_stack_area, UDP_RECEIVER_STACK_SIZE);
static struct k_thread udp_receiver_thread_data;
static zperf_callback udp_session_cb;
static void *udp_user_data;
static bool udp_server_running;
static bool udp_server_stop;
static uint16_t udp_server_port;
static K_SEM_DEFINE(udp_server_run, 0, 1);
static inline void build_reply(struct zperf_udp_datagram *hdr,
struct zperf_server_hdr *stat,
uint8_t *buf)
{
int pos = 0;
struct zperf_server_hdr *stat_hdr;
memcpy(&buf[pos], hdr, sizeof(struct zperf_udp_datagram));
pos += sizeof(struct zperf_udp_datagram);
stat_hdr = (struct zperf_server_hdr *)&buf[pos];
stat_hdr->flags = htonl(stat->flags);
stat_hdr->total_len1 = htonl(stat->total_len1);
stat_hdr->total_len2 = htonl(stat->total_len2);
stat_hdr->stop_sec = htonl(stat->stop_sec);
stat_hdr->stop_usec = htonl(stat->stop_usec);
stat_hdr->error_cnt = htonl(stat->error_cnt);
stat_hdr->outorder_cnt = htonl(stat->outorder_cnt);
stat_hdr->datagrams = htonl(stat->datagrams);
stat_hdr->jitter1 = htonl(stat->jitter1);
stat_hdr->jitter2 = htonl(stat->jitter2);
}
/* Send statistics to the remote client */
#define BUF_SIZE sizeof(struct zperf_udp_datagram) + \
sizeof(struct zperf_server_hdr)
static int zperf_receiver_send_stat(int sock, const struct sockaddr *addr,
struct zperf_udp_datagram *hdr,
struct zperf_server_hdr *stat)
{
uint8_t reply[BUF_SIZE];
int ret;
build_reply(hdr, stat, reply);
ret = zsock_sendto(sock, reply, sizeof(reply), 0, addr,
addr->sa_family == AF_INET6 ?
sizeof(struct sockaddr_in6) :
sizeof(struct sockaddr_in));
if (ret < 0) {
NET_ERR("Cannot send data to peer (%d)", errno);
}
return ret;
}
static void udp_received(int sock, const struct sockaddr *addr, uint8_t *data,
size_t datalen)
{
struct zperf_udp_datagram *hdr;
struct session *session;
int32_t transit_time;
int64_t time;
int32_t id;
if (datalen < sizeof(struct zperf_udp_datagram)) {
NET_WARN("Short iperf packet!");
return;
}
hdr = (struct zperf_udp_datagram *)data;
time = k_uptime_ticks();
session = get_session(addr, SESSION_UDP);
if (!session) {
NET_ERR("Cannot get a session!");
return;
}
id = ntohl(hdr->id);
switch (session->state) {
case STATE_COMPLETED:
case STATE_NULL:
if (id < 0) {
/* Session is already completed: Resend the stat packet
* and continue
*/
if (zperf_receiver_send_stat(sock, addr, hdr,
&session->stat) < 0) {
NET_ERR("Failed to send the packet");
}
} else {
zperf_reset_session_stats(session);
session->state = STATE_ONGOING;
session->start_time = time;
/* Start a new session! */
if (udp_session_cb != NULL) {
udp_session_cb(ZPERF_SESSION_STARTED, NULL,
udp_user_data);
}
}
break;
case STATE_ONGOING:
if (id < 0) { /* Negative id means session end. */
struct zperf_results results = { 0 };
uint32_t duration;
duration = k_ticks_to_us_ceil32(time -
session->start_time);
/* Update state machine */
session->state = STATE_COMPLETED;
/* Fill statistics */
session->stat.flags = 0x80000000;
session->stat.total_len1 = session->length >> 32;
session->stat.total_len2 =
session->length % 0xFFFFFFFF;
session->stat.stop_sec = duration / USEC_PER_SEC;
session->stat.stop_usec = duration % USEC_PER_SEC;
session->stat.error_cnt = session->error;
session->stat.outorder_cnt = session->outorder;
session->stat.datagrams = session->counter;
session->stat.jitter1 = 0;
session->stat.jitter2 = session->jitter;
if (zperf_receiver_send_stat(sock, addr, hdr,
&session->stat) < 0) {
NET_ERR("Failed to send the packet");
}
results.nb_packets_rcvd = session->counter;
results.nb_packets_lost = session->error;
results.nb_packets_outorder = session->outorder;
results.total_len = session->length;
results.time_in_us = duration;
results.jitter_in_us = session->jitter;
results.packet_size = session->length / session->counter;
if (udp_session_cb != NULL) {
udp_session_cb(ZPERF_SESSION_FINISHED, &results,
udp_user_data);
}
} else {
/* Update counter */
session->counter++;
session->length += datalen;
/* Compute jitter */
transit_time = time_delta(
k_ticks_to_us_ceil32(time),
ntohl(hdr->tv_sec) * USEC_PER_SEC +
ntohl(hdr->tv_usec));
if (session->last_transit_time != 0) {
int32_t delta_transit = transit_time -
session->last_transit_time;
delta_transit =
(delta_transit < 0) ?
-delta_transit : delta_transit;
session->jitter +=
(delta_transit - session->jitter) / 16;
}
session->last_transit_time = transit_time;
/* Check header id */
if (id != session->next_id) {
if (id < session->next_id) {
session->outorder++;
} else {
session->error += id - session->next_id;
session->next_id = id + 1;
}
} else {
session->next_id++;
}
}
break;
default:
break;
}
}
static void udp_server_session(void)
{
static uint8_t buf[UDP_RECEIVER_BUF_SIZE];
struct zsock_pollfd fds[SOCK_ID_MAX] = { 0 };
int ret;
for (int i = 0; i < ARRAY_SIZE(fds); i++) {
fds[i].fd = -1;
}
if (IS_ENABLED(CONFIG_NET_IPV4)) {
const struct in_addr *in4_addr = NULL;
in4_addr_my = zperf_get_sin();
fds[SOCK_ID_IPV4].fd = zsock_socket(AF_INET, SOCK_DGRAM,
IPPROTO_UDP);
if (fds[SOCK_ID_IPV4].fd < 0) {
NET_ERR("Cannot create IPv4 network socket.");
goto error;
}
if (MY_IP4ADDR && strlen(MY_IP4ADDR)) {
/* Use setting IP */
ret = zperf_get_ipv4_addr(MY_IP4ADDR,
&in4_addr_my->sin_addr);
if (ret < 0) {
NET_WARN("Unable to set IPv4");
goto use_existing_ipv4;
}
} else {
use_existing_ipv4:
/* Use existing IP */
in4_addr = zperf_get_default_if_in4_addr();
if (!in4_addr) {
NET_ERR("Unable to get IPv4 by default");
goto error;
}
memcpy(&in4_addr_my->sin_addr, in4_addr,
sizeof(struct in_addr));
}
NET_INFO("Binding to %s",
net_sprint_ipv4_addr(&in4_addr_my->sin_addr));
in4_addr_my->sin_port = htons(udp_server_port);
ret = zsock_bind(fds[SOCK_ID_IPV4].fd,
(struct sockaddr *)in4_addr_my,
sizeof(struct sockaddr_in));
if (ret < 0) {
NET_ERR("Cannot bind IPv4 UDP port %d (%d)",
ntohs(in4_addr_my->sin_port),
errno);
goto error;
}
fds[SOCK_ID_IPV4].events = ZSOCK_POLLIN;
}
if (IS_ENABLED(CONFIG_NET_IPV6)) {
const struct in6_addr *in6_addr = NULL;
in6_addr_my = zperf_get_sin6();
fds[SOCK_ID_IPV6].fd = zsock_socket(AF_INET6, SOCK_DGRAM,
IPPROTO_UDP);
if (fds[SOCK_ID_IPV6].fd < 0) {
NET_ERR("Cannot create IPv4 network socket.");
goto error;
}
if (MY_IP6ADDR && strlen(MY_IP6ADDR)) {
/* Use setting IP */
ret = zperf_get_ipv6_addr(MY_IP6ADDR,
MY_PREFIX_LEN_STR,
&in6_addr_my->sin6_addr);
if (ret < 0) {
NET_WARN("Unable to set IPv6");
goto use_existing_ipv6;
}
} else {
use_existing_ipv6:
/* Use existing IP */
in6_addr = zperf_get_default_if_in6_addr();
if (!in6_addr) {
NET_ERR("Unable to get IPv4 by default");
goto error;
}
memcpy(&in6_addr_my->sin6_addr, in6_addr,
sizeof(struct in6_addr));
}
NET_INFO("Binding to %s",
net_sprint_ipv6_addr(&in6_addr_my->sin6_addr));
in6_addr_my->sin6_port = htons(udp_server_port);
ret = zsock_bind(fds[SOCK_ID_IPV6].fd,
(struct sockaddr *)in6_addr_my,
sizeof(struct sockaddr_in6));
if (ret < 0) {
NET_ERR("Cannot bind IPv6 UDP port %d (%d)",
ntohs(in6_addr_my->sin6_port),
ret);
goto error;
}
fds[SOCK_ID_IPV6].events = ZSOCK_POLLIN;
}
NET_INFO("Listening on port %d", udp_server_port);
while (true) {
ret = zsock_poll(fds, ARRAY_SIZE(fds), POLL_TIMEOUT_MS);
if (ret < 0) {
NET_ERR("UDP receiver poll error (%d)", errno);
goto error;
}
if (udp_server_stop) {
goto cleanup;
}
if (ret == 0) {
continue;
}
for (int i = 0; i < ARRAY_SIZE(fds); i++) {
struct sockaddr addr;
socklen_t addrlen = sizeof(addr);
if ((fds[i].revents & ZSOCK_POLLERR) ||
(fds[i].revents & ZSOCK_POLLNVAL)) {
NET_ERR("UDP receiver IPv%d socket error",
(i == SOCK_ID_IPV4) ? 4 : 6);
goto error;
}
if (!(fds[i].revents & ZSOCK_POLLIN)) {
continue;
}
ret = zsock_recvfrom(fds[i].fd, buf, sizeof(buf), 0,
&addr, &addrlen);
if (ret < 0) {
NET_ERR("recv failed on IPv%d socket (%d)",
(i == SOCK_ID_IPV4) ? 4 : 6, errno);
goto error;
}
udp_received(fds[i].fd, &addr, buf, ret);
}
}
error:
if (udp_session_cb != NULL) {
udp_session_cb(ZPERF_SESSION_ERROR, NULL, udp_user_data);
}
cleanup:
for (int i = 0; i < ARRAY_SIZE(fds); i++) {
if (fds[i].fd >= 0) {
zsock_close(fds[i].fd);
}
}
}
static void udp_receiver_thread(void *ptr1, void *ptr2, void *ptr3)
{
ARG_UNUSED(ptr1);
ARG_UNUSED(ptr2);
ARG_UNUSED(ptr3);
while (true) {
k_sem_take(&udp_server_run, K_FOREVER);
udp_server_session();
udp_server_running = false;
}
}
void zperf_udp_receiver_init(void)
{
k_thread_create(&udp_receiver_thread_data,
udp_receiver_stack_area,
K_THREAD_STACK_SIZEOF(udp_receiver_stack_area),
udp_receiver_thread,
NULL, NULL, NULL,
UDP_RECEIVER_THREAD_PRIORITY,
IS_ENABLED(CONFIG_USERSPACE) ? K_USER |
K_INHERIT_PERMS : 0,
K_NO_WAIT);
}
int zperf_udp_download(const struct zperf_download_params *param,
zperf_callback callback, void *user_data)
{
if (param == NULL || callback == NULL) {
return -EINVAL;
}
if (udp_server_running) {
return -EALREADY;
}
udp_session_cb = callback;
udp_user_data = user_data;
udp_server_port = param->port;
udp_server_running = true;
udp_server_stop = false;
k_sem_give(&udp_server_run);
return 0;
}
int zperf_udp_download_stop(void)
{
if (!udp_server_running) {
return -EALREADY;
}
udp_server_stop = true;
udp_session_cb = NULL;
return 0;
}