zephyr/kernel/microkernel/k_timer.c

390 lines
7.9 KiB
C

/* timer kernel services */
/*
* Copyright (c) 1997-2015 Wind River Systems, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <microkernel.h>
#include <toolchain.h>
#include <sections.h>
#include <micro_private.h>
#include <drivers/system_timer.h>
extern struct k_timer _k_timer_blocks[];
struct k_timer *_k_timer_list_head;
struct k_timer *_k_timer_list_tail;
/**
* @brief Insert a timer into the timer queue
* @param T Timer
* @return N/A
*/
void _k_timer_enlist(struct k_timer *T)
{
struct k_timer *P = _k_timer_list_head;
struct k_timer *Q = NULL;
while (P && (T->duration > P->duration)) {
T->duration -= P->duration;
Q = P;
P = P->next;
}
if (P) {
P->duration -= T->duration;
P->prev = T;
} else {
_k_timer_list_tail = T;
}
if (Q) {
Q->next = T;
} else {
_k_timer_list_head = T;
}
T->next = P;
T->prev = Q;
}
/**
* @brief Remove a timer from the timer queue
* @param T Timer
* @return N/A
*/
void _k_timer_delist(struct k_timer *T)
{
struct k_timer *P = T->next;
struct k_timer *Q = T->prev;
if (P) {
P->duration += T->duration;
P->prev = Q;
} else
_k_timer_list_tail = Q;
if (Q)
Q->next = P;
else
_k_timer_list_head = P;
T->duration = -1;
}
/**
* @brief Allocate timer used for command packet timeout
*
* Allocates timer for command packet and inserts it into the timer queue.
* @param P Arguments
* @return N/A
*/
void _k_timeout_alloc(struct k_args *P)
{
struct k_timer *T;
GETTIMER(T);
T->duration = P->Time.ticks;
T->period = 0;
T->args = P;
_k_timer_enlist(T);
P->Time.timer = T;
}
/**
* @brief Cancel timer used for command packet timeout
*
* Cancels timer (if not already expired), then reschedules the command packet
* for further processing.
*
* The command that is processed following cancellation is typically NOT the
* command that would have occurred had the timeout expired on its own.
*
* @return N/A
*/
void _k_timeout_cancel(struct k_args *A)
{
struct k_timer *T = A->Time.timer;
if (T->duration != -1) {
_k_timer_delist(T);
TO_ALIST(&_k_command_stack, A);
}
}
/**
* @brief Free timer used for command packet timeout
*
* Cancels timer (if not already expired), then frees it.
* @param T Timer
* @return N/A
*/
void _k_timeout_free(struct k_timer *T)
{
if (T->duration != -1)
_k_timer_delist(T);
FREETIMER(T);
}
/**
* @brief Handle expired timers
*
* Process the sorted list of timers associated with waiting tasks and
* activate each task whose timer has now expired.
*
* With tickless idle, a tick announcement may encompass multiple ticks.
* Due to limitations of the underlying timer driver, the number of elapsed
* ticks may -- under very rare circumstances -- exceed the first timer's
* remaining tick count, although never by more a single tick. This means that
* a task timer may occasionally expire one tick later than it was scheduled to,
* and that a periodic timer may exhibit a slow, ever-increasing degree of drift
* from the main system timer over long intervals.
*
* @param ticks Number of ticks
* @return N/A
*/
void _k_timer_list_update(int ticks)
{
struct k_timer *T;
while (_k_timer_list_head != NULL) {
_k_timer_list_head->duration -= ticks;
if (_k_timer_list_head->duration > 0) {
return;
}
T = _k_timer_list_head;
if (T == _k_timer_list_tail) {
_k_timer_list_head = _k_timer_list_tail = NULL;
} else {
_k_timer_list_head = T->next;
_k_timer_list_head->prev = NULL;
}
if (T->period) {
T->duration = T->period;
_k_timer_enlist(T);
} else {
T->duration = -1;
}
TO_ALIST(&_k_command_stack, T->args);
ticks = 0; /* don't decrement duration for subsequent timer(s) */
}
}
/**
* @brief Handle timer allocation request
*
* This routine, called by _k_server(), handles the request for allocating a
* timer.
*
* @param P Pointer to timer allocation request arguments.
*
* @return N/A
*/
void _k_timer_alloc(struct k_args *P)
{
struct k_timer *T;
struct k_args *A;
GETTIMER(T);
P->args.c1.timer = T;
GETARGS(A);
T->args = A;
T->duration = -1; /* -1 indicates that timer is disabled */
}
ktimer_t task_timer_alloc(void)
{
struct k_args A;
A.Comm = _K_SVC_TIMER_ALLOC;
KERNEL_ENTRY(&A);
return (ktimer_t)A.args.c1.timer;
}
/**
*
* @brief Handle timer deallocation request
*
* This routine, called by _k_server(), handles the request for deallocating a
* timer.
* @param P Pointer to timer deallocation request arguments.
* @return N/A
*/
void _k_timer_dealloc(struct k_args *P)
{
struct k_timer *T = P->args.c1.timer;
struct k_args *A = T->args;
if (T->duration != -1)
_k_timer_delist(T);
FREETIMER(T);
FREEARGS(A);
}
void task_timer_free(ktimer_t timer)
{
struct k_args A;
A.Comm = _K_SVC_TIMER_DEALLOC;
A.args.c1.timer = (struct k_timer *)timer;
KERNEL_ENTRY(&A);
}
/**
* @brief Handle start timer request
*
* This routine, called by _k_server(), handles the start timer request from
* both task_timer_start() and task_timer_restart().
*
* @param P Pointer to timer start request arguments.
*
* @return N/A
*/
void _k_timer_start(struct k_args *P)
{
struct k_timer *T = P->args.c1.timer; /* ptr to the timer to start */
if (T->duration != -1) { /* Stop the timer if it is active */
_k_timer_delist(T);
}
T->duration = (int32_t)P->args.c1.time1; /* Set the initial delay */
T->period = P->args.c1.time2; /* Set the period */
/*
* Either the initial delay and/or the period is invalid. Mark
* the timer as inactive.
*/
if ((T->duration <= 0) || (T->period < 0)) {
T->duration = -1;
return;
}
/* Track the semaphore to signal for when the timer expires. */
if (P->args.c1.sema != _USE_CURRENT_SEM) {
T->args->Comm = _K_SVC_SEM_SIGNAL;
T->args->args.s1.sema = P->args.c1.sema;
}
_k_timer_enlist(T);
}
void task_timer_start(ktimer_t timer, int32_t duration, int32_t period,
ksem_t sema)
{
struct k_args A;
A.Comm = _K_SVC_TIMER_START;
A.args.c1.timer = (struct k_timer *)timer;
A.args.c1.time1 = (int64_t)duration;
A.args.c1.time2 = period;
A.args.c1.sema = sema;
KERNEL_ENTRY(&A);
}
/**
*
* @brief Handle stop timer request
*
* This routine, called by _k_server(), handles the request for stopping a
* timer.
*
* @return N/A
*/
void _k_timer_stop(struct k_args *P)
{
struct k_timer *T = P->args.c1.timer;
if (T->duration != -1)
_k_timer_delist(T);
}
void task_timer_stop(ktimer_t timer)
{
struct k_args A;
A.Comm = _K_SVC_TIMER_STOP;
A.args.c1.timer = (struct k_timer *)timer;
KERNEL_ENTRY(&A);
}
/**
*
* @brief Handle internally issued task wakeup request
*
* This routine, called by _k_server(), handles the request for waking a task
* at the end of its sleep period.
*
* @return N/A
*/
void _k_task_wakeup(struct k_args *P)
{
struct k_timer *T;
struct k_task *X;
X = P->Ctxt.task;
T = P->Time.timer;
FREETIMER(T);
_k_state_bit_reset(X, TF_TIME);
}
/**
*
* @brief Handle task sleep request
*
* This routine, called by _k_server(), handles the request for putting a task
* to sleep.
*
* @param P Pointer to timer sleep request arguments.
* @return N/A
*/
void _k_task_sleep(struct k_args *P)
{
struct k_timer *T;
if ((P->Time.ticks) <= 0) {
return;
}
GETTIMER(T);
T->duration = P->Time.ticks;
T->period = 0;
T->args = P;
P->Comm = _K_SVC_TASK_WAKEUP;
P->Ctxt.task = _k_current_task;
P->Time.timer = T;
_k_timer_enlist(T);
_k_state_bit_set(_k_current_task, TF_TIME);
}
void task_sleep(int32_t ticks)
{
struct k_args A;
A.Comm = _K_SVC_TASK_SLEEP;
A.Time.ticks = ticks;
KERNEL_ENTRY(&A);
}