zephyr/kernel/microkernel/k_memory_pool.c

646 lines
15 KiB
C

/*
* Copyright (c) 1997-2010, 2013-2014 Wind River Systems, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <microkernel.h>
#include <micro_private.h>
#include <toolchain.h>
#include <sections.h>
/* Auto-Defrag settings */
#define AD_NONE 0
#define AD_BEFORE_SEARCH4BIGGERBLOCK 1
#define AD_AFTER_SEARCH4BIGGERBLOCK 2
#define AUTODEFRAG AD_AFTER_SEARCH4BIGGERBLOCK
/**
*
* @brief Initialize kernel memory pool subsystem
*
* Perform any initialization of memory pool that wasn't done at build time.
*
* @return N/A
*/
void _k_mem_pool_init(void)
{
int i, j, k;
struct pool_struct *P;
char *memptr;
/* for all pools initialise largest blocks */
for (i = 0, P = _k_mem_pool_list; i < _k_mem_pool_count; i++, P++) {
int remaining = P->nr_of_maxblocks;
int t = 0;
/* initialise block-arrays */
for (k = 0; k < P->nr_of_frags; k++) {
P->frag_tab[k].count = 0;
for (j = 0; j < P->frag_tab[k].nr_of_entries; j++) {
P->frag_tab[k].blocktable[j].mem_blocks = NULL;
P->frag_tab[k].blocktable[j].mem_status =
0xF; /* all blocks in use */
}
}
memptr = P->bufblock;
while (remaining >= 4) { /* while not all blocks allocated */
/* - put pointer in table - */
P->frag_tab[0].blocktable[t].mem_blocks = memptr;
P->frag_tab[0].blocktable[t].mem_status =
0; /* all blocks initial free */
t++; /* next entry in table */
remaining = remaining - 4;
memptr +=
OCTET_TO_SIZEOFUNIT(P->frag_tab[0].block_size) *
4;
}
if (remaining != 0) {
/* - put pointer in table - */
P->frag_tab[0].blocktable[t].mem_blocks = memptr;
P->frag_tab[0].blocktable[t].mem_status =
(0xF << remaining) &
0xF; /* mark unaccessible blocks as used */
}
}
}
/**
*
* @brief ???
*
* marks ptr as free block in the given list [MYSTERIOUS LEGACY COMMENT]
*
* @return N/A
*/
static void search_bp(char *ptr, struct pool_struct *P, int index)
{
int i = 0, j, block_found = 0;
while ((P->frag_tab[index].blocktable[i].mem_blocks != NULL) &&
(!block_found)) {
for (j = 0; j < 4; j++) {
if (ptr ==
((P->frag_tab[index].blocktable[i].mem_blocks) +
(OCTET_TO_SIZEOFUNIT(
j * P->frag_tab[index].block_size)))) {
/* then we've found the right pointer */
block_found = 1;
/* so free it */
P->frag_tab[index].blocktable[i].mem_status =
P->frag_tab[index]
.blocktable[i]
.mem_status &
(~(1 << j));
}
}
i++;
}
}
/**
*
* @brief Defragmentation algorithm for memory pool
*
* @return N/A
*/
static void defrag(struct pool_struct *P,
int ifraglevel_start,
int ifraglevel_stop)
{
int i, j, k;
j = ifraglevel_start;
while (j > ifraglevel_stop) {
i = 0;
while (P->frag_tab[j].blocktable[i].mem_blocks != NULL) {
if ((P->frag_tab[j].blocktable[i].mem_status & 0xF) ==
0) { /* blocks for defragmenting */
search_bp(
P->frag_tab[j].blocktable[i].mem_blocks,
P,
j - 1);
/* remove blocks & compact list */
k = i;
while ((P->frag_tab[j]
.blocktable[k]
.mem_blocks != NULL) &&
(k <
(P->frag_tab[j].nr_of_entries - 1))) {
P->frag_tab[j]
.blocktable[k]
.mem_blocks =
P->frag_tab[j]
.blocktable[k + 1]
.mem_blocks;
P->frag_tab[j]
.blocktable[k]
.mem_status =
P->frag_tab[j]
.blocktable[k + 1]
.mem_status;
k++;
}
P->frag_tab[j].blocktable[k].mem_blocks = NULL;
P->frag_tab[j].blocktable[k].mem_status = 0;
} else {
i++; /* take next block */
}
}
j--;
}
}
/**
*
* @brief Perform defragment memory pool request
*
* @return N/A
*/
void _k_defrag(struct k_args *A)
{
struct pool_struct *P = _k_mem_pool_list + OBJ_INDEX(A->args.p1.pool_id);
defrag(P,
P->nr_of_frags - 1, /* start from smallest blocks */
0 /* and defragment till fragment level 0 */
);
/* reschedule waiters */
if (
P->waiters) {
struct k_args *NewGet;
/*
* get new command packet that calls the function
* that reallocate blocks for the waiting tasks
*/
GETARGS(NewGet);
*NewGet = *A;
NewGet->Comm = _K_SVC_BLOCK_WAITERS_GET;
TO_ALIST(&_k_command_stack, NewGet); /*push on command stack */
}
}
void task_mem_pool_defragment(kmemory_pool_t Pid)
{
struct k_args A;
A.Comm = _K_SVC_DEFRAG;
A.args.p1.pool_id = Pid;
KERNEL_ENTRY(&A);
}
/**
*
* @brief Allocate block using specified fragmentation level
*
* This routine attempts to allocate a free block. [NEED TO EXPAND THIS]
*
* @return pointer to allocated block, or NULL if none available
*/
static char *search_block_on_frag_level(struct pool_block *pfraglevelinfo,
int *piblockindex)
{
int i, status, end_of_list;
char *found;
i = 0;
end_of_list = 0;
found = NULL;
while (!end_of_list) {/* search list */
if (pfraglevelinfo->blocktable[i].mem_blocks == NULL) {
end_of_list = 1;
} else {
status = pfraglevelinfo->blocktable[i].mem_status;
if (!(status & 1)) {
found = pfraglevelinfo->blocktable[i]
.mem_blocks;
pfraglevelinfo->blocktable[i].mem_status |=
1; /* set status used */
#ifdef CONFIG_OBJECT_MONITOR
pfraglevelinfo->count++;
#endif
break;
} else if (!(status & 2)) {
found = pfraglevelinfo->blocktable[i]
.mem_blocks +
(OCTET_TO_SIZEOFUNIT(
pfraglevelinfo->block_size));
pfraglevelinfo->blocktable[i].mem_status |=
2; /* set status used */
#ifdef CONFIG_OBJECT_MONITOR
pfraglevelinfo->count++;
#endif
break;
} else if (!(status & 4)) {
found = pfraglevelinfo->blocktable[i]
.mem_blocks +
(OCTET_TO_SIZEOFUNIT(
2 *
pfraglevelinfo->block_size));
pfraglevelinfo->blocktable[i].mem_status |=
4; /* set status used */
#ifdef CONFIG_OBJECT_MONITOR
pfraglevelinfo->count++;
#endif
break;
} else if (!(status & 8)) {
found = pfraglevelinfo->blocktable[i]
.mem_blocks +
(OCTET_TO_SIZEOFUNIT(
3 *
pfraglevelinfo->block_size));
pfraglevelinfo->blocktable[i].mem_status |=
8; /* set status used */
#ifdef CONFIG_OBJECT_MONITOR
pfraglevelinfo->count++;
#endif
break;
}
i++;
if (i >= pfraglevelinfo->nr_of_entries) {
end_of_list = 1;
}
}
} /* while (...) */
*piblockindex = i;
return found;
}
/**
*
* @brief Recursively get a block, doing fragmentation if necessary
*
* @file
* @brief Memory pool kernel services
*
*
* not implemented: check if we go below the minimal number of blocks with
* the maximum size
*
* @return pointer to allocated block, or NULL if none available
*/
static char *get_block_recusive(struct pool_struct *P, int index, int startindex)
{
int i;
char *found, *larger_block;
struct pool_block *fr_table;
if (index < 0) {
return NULL; /* no more free blocks in pool */
}
fr_table = P->frag_tab;
i = 0;
/* let's inspect the fragmentation level <index> */
found = search_block_on_frag_level(&(fr_table[index]), &i);
if (found != NULL) {
return found;
}
#if AUTODEFRAG == AD_BEFORE_SEARCH4BIGGERBLOCK
/* maybe a partial defrag will free up a block? */
if (index == startindex) { /* only for the original request */
defrag(P,
P->nr_of_frags - 1, /* start from the smallest blocks */
startindex); /* but only until the requested blocksize
* (fragmentation level) !!
*/
found = search_block_on_frag_level(&(fr_table[index]), &i);
if (found != NULL) {
return found;
}
}
/* partial defrag did not release a block of level <index> */
#endif
/* end of list and i is index of first empty entry in blocktable */
{
/* get a block of one size larger */
larger_block = get_block_recusive(
P, index - 1, startindex);
}
if (larger_block != NULL) {
/* insert 4 found blocks and mark one block as used */
fr_table[index].blocktable[i].mem_blocks = larger_block;
fr_table[index].blocktable[i].mem_status = 1;
#ifdef CONFIG_OBJECT_MONITOR
fr_table[index].count++;
#endif
return larger_block; /* return marked block */
}
/* trying to get a larger block did not succeed */
#if AUTODEFRAG == AD_AFTER_SEARCH4BIGGERBLOCK
/* maybe a partial defrag will free up a block? */
if (index == startindex) { /* only for the original request */
defrag(P,
P->nr_of_frags - 1, /* start from the smallest blocks */
startindex); /* but only until the requested blocksize
* (fragmentation level) !!
*/
found = search_block_on_frag_level(&(fr_table[index]), &i);
if (found != NULL) {
return found;
}
}
/* partial defrag did not release a block of level <index> */
#endif
return NULL; /* now we have to report failure: no block available */
}
/**
*
* @brief Examine tasks that are waiting for memory pool blocks
*
* This routine attempts to satisfy any incomplete block allocation requests for
* the specified memory pool. It can be invoked either by the explicit freeing
* of a used block or as a result of defragmenting the pool (which may create
* one or more new, larger blocks).
*
* @return N/A
*/
void _k_block_waiters_get(struct k_args *A)
{
struct pool_struct *P = _k_mem_pool_list + OBJ_INDEX(A->args.p1.pool_id);
char *found_block;
struct k_args *curr_task, *prev_task;
int start_size, offset;
curr_task = P->waiters;
/* forw is first field in struct */
prev_task = (struct k_args *)&(P->waiters);
/* loop all waiters */
while (curr_task != NULL) {
/* calculate size & offset */
start_size = P->minblock_size;
offset = P->nr_of_frags - 1;
while (curr_task->args.p1.req_size > start_size) {
start_size = start_size << 2; /* try one larger */
offset--;
}
/* allocate block */
found_block = get_block_recusive(
P, offset, offset); /* allocate and fragment blocks */
/* if success : remove task from list and reschedule */
if (found_block != NULL) {
/* return found block */
curr_task->args.p1.rep_poolptr = found_block;
curr_task->args.p1.rep_dataptr = found_block;
/* reschedule task */
#ifdef CONFIG_SYS_CLOCK_EXISTS
if (curr_task->Time.timer) {
_k_timeout_free(curr_task->Time.timer);
}
#endif
curr_task->Time.rcode = RC_OK;
_k_state_bit_reset(curr_task->Ctxt.task, TF_GTBL);
/* remove from list */
prev_task->next = curr_task->next;
/* and get next task */
curr_task = curr_task->next;
} else {
/* else just get next task */
prev_task = curr_task;
curr_task = curr_task->next;
}
}
/* put used command packet on the empty packet list */
FREEARGS(A);
}
/**
*
* @brief Finish handling an allocate block request that timed out
*
* @return N/A
*/
void _k_mem_pool_block_get_timeout_handle(struct k_args *A)
{
_k_timeout_free(A->Time.timer);
REMOVE_ELM(A);
A->Time.rcode = RC_TIME;
_k_state_bit_reset(A->Ctxt.task, TF_GTBL);
}
/**
*
* @brief Perform allocate memory pool block request
*
* @return N/A
*/
void _k_mem_pool_block_get(struct k_args *A)
{
struct pool_struct *P = _k_mem_pool_list + OBJ_INDEX(A->args.p1.pool_id);
char *found_block;
int start_size;
int offset;
/* calculate start size */
start_size = P->minblock_size;
offset = P->nr_of_frags - 1;
while (A->args.p1.req_size > start_size) {
start_size = start_size << 2; /*try one larger */
offset--;
}
/* startsize==the available size that can contain the requeste block size */
/* offset: index in fragtable of the minimal blocksize */
found_block =
get_block_recusive(P, offset, offset); /* allocate and fragment blocks */
if (found_block != NULL) {
A->args.p1.rep_poolptr = found_block;
A->args.p1.rep_dataptr = found_block;
A->Time.rcode = RC_OK;
return; /* return found block */
}
if (likely(
(A->Time.ticks != TICKS_NONE) &&
(A->args.p1.req_size <=
P->maxblock_size))) {/* timeout? but not block to large */
A->priority = _k_current_task->priority;
A->Ctxt.task = _k_current_task;
_k_state_bit_set(_k_current_task, TF_GTBL); /* extra new statebit */
/* INSERT_ELM (P->frag_tab[offset].waiters, A); */
INSERT_ELM(P->waiters, A);
#ifdef CONFIG_SYS_CLOCK_EXISTS
if (A->Time.ticks == TICKS_UNLIMITED) {
A->Time.timer = NULL;
} else {
A->Comm = _K_SVC_MEM_POOL_BLOCK_GET_TIMEOUT_HANDLE;
_k_timeout_alloc(A);
}
#endif
} else {
A->Time.rcode =
RC_FAIL; /* no blocks available or block too large */
}
}
/**
*
* @brief Allocate memory pool block request
*
* This routine allocates a free block from the specified memory pool, ensuring
* that its size is at least as big as the size requested (in bytes).
*
* @param blockptr poitner to requested block
* @param pool_id pool from which to get block
* @param reqsize requested block size
* @param time maximum number of ticks to wait
*
* @return RC_OK, RC_FAIL, RC_TIME on success, failure, timeout respectively
*/
int task_mem_pool_alloc(struct k_block *blockptr, kmemory_pool_t pool_id,
int reqsize, int32_t timeout)
{
struct k_args A;
A.Comm = _K_SVC_MEM_POOL_BLOCK_GET;
A.Time.ticks = timeout;
A.args.p1.pool_id = pool_id;
A.args.p1.req_size = reqsize;
KERNEL_ENTRY(&A);
blockptr->pool_id = pool_id;
blockptr->address_in_pool = A.args.p1.rep_poolptr;
blockptr->pointer_to_data = A.args.p1.rep_dataptr;
blockptr->req_size = reqsize;
return A.Time.rcode;
}
/**
*
* @brief Perform return memory pool block request
*
* Marks a block belonging to a pool as free; if there are waiters that can use
* the the block it is passed to a waiting task.
*
* @return N/A
*/
void _k_mem_pool_block_release(struct k_args *A)
{
struct pool_struct *P;
struct pool_block *block;
struct block_stat *blockstat;
int Pid;
int start_size, offset;
int i, j;
Pid = A->args.p1.pool_id;
P = _k_mem_pool_list + OBJ_INDEX(Pid);
/* calculate size */
start_size = P->minblock_size;
offset = P->nr_of_frags - 1;
while (A->args.p1.req_size > start_size) {
start_size = start_size << 2; /* try one larger */
offset--;
}
/* startsize==the available size that contains the requested block size */
/* offset: index in fragtable of the block */
j = 0;
block = P->frag_tab + offset;
while ((j < block->nr_of_entries) &&
((blockstat = block->blocktable + j)->mem_blocks != 0)) {
for (i = 0; i < 4; i++) {
if (A->args.p1.rep_poolptr ==
(blockstat->mem_blocks +
(OCTET_TO_SIZEOFUNIT(i * block->block_size)))) {
/* we've found the right pointer, so free it */
blockstat->mem_status &= ~(1 << i);
/* waiters? */
if (P->waiters != NULL) {
struct k_args *NewGet;
/*
* get new command packet that calls
* the function that reallocate blocks
* for the waiting tasks
*/
GETARGS(NewGet);
*NewGet = *A;
NewGet->Comm = _K_SVC_BLOCK_WAITERS_GET;
/* push on command stack */
TO_ALIST(&_k_command_stack, NewGet);
}
if (A->alloc) {
FREEARGS(A);
}
return;
}
}
j++;
}
}
void task_mem_pool_free(struct k_block *blockptr)
{
struct k_args A;
A.Comm = _K_SVC_MEM_POOL_BLOCK_RELEASE;
A.args.p1.pool_id = blockptr->pool_id;
A.args.p1.req_size = blockptr->req_size;
A.args.p1.rep_poolptr = blockptr->address_in_pool;
A.args.p1.rep_dataptr = blockptr->pointer_to_data;
KERNEL_ENTRY(&A);
}