zephyr/drivers/video/video_stm32_dcmi.c

535 lines
14 KiB
C

/*
* Copyright (c) 2024 Charles Dias <charlesdias.cd@outlook.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT st_stm32_dcmi
#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/irq.h>
#include <zephyr/logging/log.h>
#include <zephyr/drivers/video.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/dma.h>
#include <zephyr/drivers/dma/dma_stm32.h>
#include <stm32_ll_dma.h>
LOG_MODULE_REGISTER(video_stm32_dcmi, CONFIG_VIDEO_LOG_LEVEL);
K_HEAP_DEFINE(video_stm32_buffer_pool, CONFIG_VIDEO_BUFFER_POOL_SZ_MAX);
typedef void (*irq_config_func_t)(const struct device *dev);
struct stream {
DMA_TypeDef *reg;
const struct device *dma_dev;
uint32_t channel;
struct dma_config cfg;
};
struct video_stm32_dcmi_data {
const struct device *dev;
DCMI_HandleTypeDef hdcmi;
struct video_format fmt;
struct k_fifo fifo_in;
struct k_fifo fifo_out;
uint32_t pixel_format;
uint32_t height;
uint32_t width;
uint32_t pitch;
uint8_t *buffer;
};
struct video_stm32_dcmi_config {
struct stm32_pclken pclken;
irq_config_func_t irq_config;
const struct pinctrl_dev_config *pctrl;
const struct device *sensor_dev;
const struct stream dma;
};
static inline unsigned int video_pix_fmt_bpp(uint32_t pixelformat)
{
switch (pixelformat) {
case VIDEO_PIX_FMT_BGGR8:
case VIDEO_PIX_FMT_GBRG8:
case VIDEO_PIX_FMT_GRBG8:
case VIDEO_PIX_FMT_RGGB8:
return 1;
case VIDEO_PIX_FMT_RGB565:
case VIDEO_PIX_FMT_YUYV:
return 2;
default:
return 0;
}
}
void HAL_DCMI_ErrorCallback(DCMI_HandleTypeDef *hdcmi)
{
LOG_WRN("%s", __func__);
}
void HAL_DCMI_FrameEventCallback(DCMI_HandleTypeDef *hdcmi)
{
struct video_stm32_dcmi_data *dev_data =
CONTAINER_OF(hdcmi, struct video_stm32_dcmi_data, hdcmi);
struct video_buffer *vbuf;
HAL_DCMI_Suspend(hdcmi);
vbuf = k_fifo_get(&dev_data->fifo_in, K_NO_WAIT);
if (vbuf == NULL) {
LOG_DBG("Failed to get buffer from fifo");
goto resume;
}
vbuf->timestamp = k_uptime_get_32();
memcpy(vbuf->buffer, dev_data->buffer, vbuf->bytesused);
k_fifo_put(&dev_data->fifo_out, vbuf);
resume:
HAL_DCMI_Resume(hdcmi);
}
static void stm32_dcmi_isr(const struct device *dev)
{
struct video_stm32_dcmi_data *data = dev->data;
HAL_DCMI_IRQHandler(&data->hdcmi);
}
static void dmci_dma_callback(const struct device *dev, void *arg,
uint32_t channel, int status)
{
DMA_HandleTypeDef *hdma = arg;
ARG_UNUSED(dev);
if (status < 0) {
LOG_ERR("DMA callback error with channel %d.", channel);
}
HAL_DMA_IRQHandler(hdma);
}
void HAL_DMA_ErrorCallback(DMA_HandleTypeDef *hdma)
{
LOG_WRN("%s", __func__);
}
static int stm32_dma_init(const struct device *dev)
{
struct video_stm32_dcmi_data *data = dev->data;
const struct video_stm32_dcmi_config *config = dev->config;
int ret;
/* Check if the DMA device is ready */
if (!device_is_ready(config->dma.dma_dev)) {
LOG_ERR("%s DMA device not ready", config->dma.dma_dev->name);
return -ENODEV;
}
/*
* DMA configuration
* Due to use of QSPI HAL API in current driver,
* both HAL and Zephyr DMA drivers should be configured.
* The required configuration for Zephyr DMA driver should only provide
* the minimum information to inform the DMA slot will be in used and
* how to route callbacks.
*/
struct dma_config dma_cfg = config->dma.cfg;
static DMA_HandleTypeDef hdma;
/* Proceed to the minimum Zephyr DMA driver init */
dma_cfg.user_data = &hdma;
/* HACK: This field is used to inform driver that it is overridden */
dma_cfg.linked_channel = STM32_DMA_HAL_OVERRIDE;
/* Because of the STREAM OFFSET, the DMA channel given here is from 1 - 8 */
ret = dma_config(config->dma.dma_dev,
config->dma.channel + STM32_DMA_STREAM_OFFSET, &dma_cfg);
if (ret != 0) {
LOG_ERR("Failed to configure DMA channel %d",
config->dma.channel + STM32_DMA_STREAM_OFFSET);
return ret;
}
/*** Configure the DMA ***/
/* Set the parameters to be configured */
hdma.Init.Request = DMA_REQUEST_DCMI;
hdma.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma.Init.PeriphInc = DMA_PINC_DISABLE;
hdma.Init.MemInc = DMA_MINC_ENABLE;
hdma.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
hdma.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
hdma.Init.Mode = DMA_CIRCULAR;
hdma.Init.Priority = DMA_PRIORITY_HIGH;
hdma.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
hdma.Instance = __LL_DMA_GET_STREAM_INSTANCE(config->dma.reg,
config->dma.channel);
/* Initialize DMA HAL */
__HAL_LINKDMA(&data->hdcmi, DMA_Handle, hdma);
if (HAL_DMA_Init(&hdma) != HAL_OK) {
LOG_ERR("DCMI DMA Init failed");
return -EIO;
}
return 0;
}
static int stm32_dcmi_enable_clock(const struct device *dev)
{
const struct video_stm32_dcmi_config *config = dev->config;
const struct device *dcmi_clock = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
int err;
if (!device_is_ready(dcmi_clock)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
/* Turn on DCMI peripheral clock */
err = clock_control_on(dcmi_clock, (clock_control_subsys_t *) &config->pclken);
if (err < 0) {
LOG_ERR("Failed to enable DCMI clock. Error %d", err);
return err;
}
return 0;
}
static int video_stm32_dcmi_set_fmt(const struct device *dev,
enum video_endpoint_id ep,
struct video_format *fmt)
{
const struct video_stm32_dcmi_config *config = dev->config;
struct video_stm32_dcmi_data *data = dev->data;
unsigned int bpp = video_pix_fmt_bpp(fmt->pixelformat);
if (bpp == 0 || (ep != VIDEO_EP_OUT && ep != VIDEO_EP_ALL)) {
return -EINVAL;
}
data->pixel_format = fmt->pixelformat;
data->pitch = fmt->pitch;
data->height = fmt->height;
data->width = fmt->width;
if (video_set_format(config->sensor_dev, ep, fmt)) {
return -EIO;
}
return 0;
}
static int video_stm32_dcmi_get_fmt(const struct device *dev,
enum video_endpoint_id ep,
struct video_format *fmt)
{
struct video_stm32_dcmi_data *data = dev->data;
const struct video_stm32_dcmi_config *config = dev->config;
if (fmt == NULL || (ep != VIDEO_EP_OUT && ep != VIDEO_EP_ALL)) {
return -EINVAL;
}
if (!video_get_format(config->sensor_dev, ep, fmt)) {
/* align DCMI with sensor fmt */
return video_stm32_dcmi_set_fmt(dev, ep, fmt);
}
fmt->pixelformat = data->pixel_format;
fmt->height = data->height;
fmt->width = data->width;
fmt->pitch = data->pitch;
return 0;
}
static int video_stm32_dcmi_stream_start(const struct device *dev)
{
struct video_stm32_dcmi_data *data = dev->data;
const struct video_stm32_dcmi_config *config = dev->config;
size_t buffer_size = data->pitch * data->height;
data->buffer = k_heap_alloc(&video_stm32_buffer_pool, buffer_size, K_NO_WAIT);
if (data->buffer == NULL) {
LOG_ERR("Failed to allocate DCMI buffer for image. Size %d bytes", buffer_size);
return -ENOMEM;
}
int err = HAL_DCMI_Start_DMA(&data->hdcmi, DCMI_MODE_CONTINUOUS,
(uint32_t)data->buffer, buffer_size / 4);
if (err != HAL_OK) {
LOG_ERR("Failed to start DCMI DMA");
return -EIO;
}
if (video_stream_start(config->sensor_dev)) {
return -EIO;
}
return 0;
}
static int video_stm32_dcmi_stream_stop(const struct device *dev)
{
struct video_stm32_dcmi_data *data = dev->data;
const struct video_stm32_dcmi_config *config = dev->config;
int err;
if (video_stream_stop(config->sensor_dev)) {
return -EIO;
}
/* Release the buffer allocated in stream_start */
k_heap_free(&video_stm32_buffer_pool, data->buffer);
err = HAL_DCMI_Stop(&data->hdcmi);
if (err != HAL_OK) {
LOG_ERR("Failed to stop DCMI");
return -EIO;
}
return 0;
}
static int video_stm32_dcmi_enqueue(const struct device *dev,
enum video_endpoint_id ep,
struct video_buffer *vbuf)
{
struct video_stm32_dcmi_data *data = dev->data;
const uint32_t buffer_size = data->pitch * data->height;
if (ep != VIDEO_EP_OUT && ep != VIDEO_EP_ALL) {
return -EINVAL;
}
if (buffer_size > vbuf->size) {
return -EINVAL;
}
vbuf->bytesused = buffer_size;
k_fifo_put(&data->fifo_in, vbuf);
return 0;
}
static int video_stm32_dcmi_dequeue(const struct device *dev,
enum video_endpoint_id ep,
struct video_buffer **vbuf,
k_timeout_t timeout)
{
struct video_stm32_dcmi_data *data = dev->data;
if (ep != VIDEO_EP_OUT && ep != VIDEO_EP_ALL) {
return -EINVAL;
}
*vbuf = k_fifo_get(&data->fifo_out, timeout);
if (*vbuf == NULL) {
return -EAGAIN;
}
return 0;
}
static int video_stm32_dcmi_get_caps(const struct device *dev,
enum video_endpoint_id ep,
struct video_caps *caps)
{
const struct video_stm32_dcmi_config *config = dev->config;
int ret = -ENODEV;
if (ep != VIDEO_EP_OUT && ep != VIDEO_EP_ALL) {
return -EINVAL;
}
/* Forward the message to the sensor device */
ret = video_get_caps(config->sensor_dev, ep, caps);
return ret;
}
static inline int video_stm32_dcmi_set_ctrl(const struct device *dev, unsigned int cid, void *value)
{
const struct video_stm32_dcmi_config *config = dev->config;
int ret;
/* Forward to source dev if any */
ret = video_set_ctrl(config->sensor_dev, cid, value);
return ret;
}
static inline int video_stm32_dcmi_get_ctrl(const struct device *dev, unsigned int cid, void *value)
{
const struct video_stm32_dcmi_config *config = dev->config;
int ret;
/* Forward to source dev if any */
ret = video_get_ctrl(config->sensor_dev, cid, value);
return ret;
}
static const struct video_driver_api video_stm32_dcmi_driver_api = {
.set_format = video_stm32_dcmi_set_fmt,
.get_format = video_stm32_dcmi_get_fmt,
.stream_start = video_stm32_dcmi_stream_start,
.stream_stop = video_stm32_dcmi_stream_stop,
.enqueue = video_stm32_dcmi_enqueue,
.dequeue = video_stm32_dcmi_dequeue,
.get_caps = video_stm32_dcmi_get_caps,
.set_ctrl = video_stm32_dcmi_set_ctrl,
.get_ctrl = video_stm32_dcmi_get_ctrl,
};
static void video_stm32_dcmi_irq_config_func(const struct device *dev)
{
IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority),
stm32_dcmi_isr, DEVICE_DT_INST_GET(0), 0);
irq_enable(DT_INST_IRQN(0));
}
#define DCMI_DMA_CHANNEL_INIT(index, src_dev, dest_dev) \
.dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_IDX(index, 0)), \
.channel = DT_INST_DMAS_CELL_BY_IDX(index, 0, channel), \
.reg = (DMA_TypeDef *)DT_REG_ADDR( \
DT_PHANDLE_BY_IDX(DT_DRV_INST(0), dmas, 0)), \
.cfg = { \
.dma_slot = STM32_DMA_SLOT_BY_IDX(index, 0, slot), \
.channel_direction = STM32_DMA_CONFIG_DIRECTION( \
STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)), \
.source_data_size = STM32_DMA_CONFIG_##src_dev##_DATA_SIZE( \
STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)), \
.dest_data_size = STM32_DMA_CONFIG_##dest_dev##_DATA_SIZE( \
STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)), \
.source_burst_length = 1, /* SINGLE transfer */ \
.dest_burst_length = 1, /* SINGLE transfer */ \
.channel_priority = STM32_DMA_CONFIG_PRIORITY( \
STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)), \
.dma_callback = dmci_dma_callback, \
}, \
PINCTRL_DT_INST_DEFINE(0);
#define STM32_DCMI_GET_CAPTURE_RATE(capture_rate) \
((capture_rate) == 1 ? DCMI_CR_ALL_FRAME : \
(capture_rate) == 2 ? DCMI_CR_ALTERNATE_2_FRAME : \
(capture_rate) == 4 ? DCMI_CR_ALTERNATE_4_FRAME : \
DCMI_CR_ALL_FRAME)
#define STM32_DCMI_GET_BUS_WIDTH(bus_width) \
((bus_width) == 8 ? DCMI_EXTEND_DATA_8B : \
(bus_width) == 10 ? DCMI_EXTEND_DATA_10B : \
(bus_width) == 12 ? DCMI_EXTEND_DATA_12B : \
(bus_width) == 14 ? DCMI_EXTEND_DATA_14B : \
DCMI_EXTEND_DATA_8B)
#define DCMI_DMA_CHANNEL(id, src, dest) \
.dma = { \
COND_CODE_1(DT_INST_DMAS_HAS_IDX(id, 0), \
(DCMI_DMA_CHANNEL_INIT(id, src, dest)), \
(NULL)) \
},
static struct video_stm32_dcmi_data video_stm32_dcmi_data_0 = {
.hdcmi = {
.Instance = (DCMI_TypeDef *) DT_INST_REG_ADDR(0),
.Init = {
.SynchroMode = DCMI_SYNCHRO_HARDWARE,
.PCKPolarity = (DT_INST_PROP(0, pixelclk_active) ?
DCMI_PCKPOLARITY_RISING : DCMI_PCKPOLARITY_FALLING),
.HSPolarity = (DT_INST_PROP(0, hsync_active) ?
DCMI_HSPOLARITY_HIGH : DCMI_HSPOLARITY_LOW),
.VSPolarity = (DT_INST_PROP(0, vsync_active) ?
DCMI_VSPOLARITY_HIGH : DCMI_VSPOLARITY_LOW),
.CaptureRate = STM32_DCMI_GET_CAPTURE_RATE(
DT_INST_PROP(0, capture_rate)),
.ExtendedDataMode = STM32_DCMI_GET_BUS_WIDTH(
DT_INST_PROP(0, bus_width)),
.JPEGMode = DCMI_JPEG_DISABLE,
.ByteSelectMode = DCMI_BSM_ALL,
.ByteSelectStart = DCMI_OEBS_ODD,
.LineSelectMode = DCMI_LSM_ALL,
.LineSelectStart = DCMI_OELS_ODD,
},
},
};
static const struct video_stm32_dcmi_config video_stm32_dcmi_config_0 = {
.pclken = {
.enr = DT_INST_CLOCKS_CELL(0, bits),
.bus = DT_INST_CLOCKS_CELL(0, bus)
},
.irq_config = video_stm32_dcmi_irq_config_func,
.pctrl = PINCTRL_DT_INST_DEV_CONFIG_GET(0),
.sensor_dev = DEVICE_DT_GET(DT_INST_PHANDLE(0, sensor)),
DCMI_DMA_CHANNEL(0, PERIPHERAL, MEMORY)
};
static int video_stm32_dcmi_init(const struct device *dev)
{
const struct video_stm32_dcmi_config *config = dev->config;
struct video_stm32_dcmi_data *data = dev->data;
int err;
/* Configure DT provided pins */
err = pinctrl_apply_state(config->pctrl, PINCTRL_STATE_DEFAULT);
if (err < 0) {
LOG_ERR("pinctrl setup failed. Error %d.", err);
return err;
}
/* Initialize DMA peripheral */
err = stm32_dma_init(dev);
if (err < 0) {
LOG_ERR("DMA initialization failed.");
return err;
}
/* Enable DCMI clock */
err = stm32_dcmi_enable_clock(dev);
if (err < 0) {
LOG_ERR("Clock enabling failed.");
return -EIO;
}
data->dev = dev;
k_fifo_init(&data->fifo_in);
k_fifo_init(&data->fifo_out);
/* Run IRQ init */
config->irq_config(dev);
/* Initialize DCMI peripheral */
err = HAL_DCMI_Init(&data->hdcmi);
if (err != HAL_OK) {
LOG_ERR("DCMI initialization failed.");
return -EIO;
}
k_sleep(K_MSEC(100));
LOG_DBG("%s inited", dev->name);
return 0;
}
DEVICE_DT_INST_DEFINE(0, &video_stm32_dcmi_init,
NULL, &video_stm32_dcmi_data_0,
&video_stm32_dcmi_config_0,
POST_KERNEL, CONFIG_VIDEO_INIT_PRIORITY,
&video_stm32_dcmi_driver_api);