1919 lines
46 KiB
C
1919 lines
46 KiB
C
/*
|
|
* Copyright (c) 2018 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
#include <zephyr/kernel.h>
|
|
#include <ksched.h>
|
|
#include <zephyr/spinlock.h>
|
|
#include <zephyr/kernel/sched_priq.h>
|
|
#include <zephyr/wait_q.h>
|
|
#include <kswap.h>
|
|
#include <kernel_arch_func.h>
|
|
#include <zephyr/syscall_handler.h>
|
|
#include <zephyr/drivers/timer/system_timer.h>
|
|
#include <stdbool.h>
|
|
#include <kernel_internal.h>
|
|
#include <zephyr/logging/log.h>
|
|
#include <zephyr/sys/atomic.h>
|
|
#include <zephyr/sys/math_extras.h>
|
|
#include <zephyr/timing/timing.h>
|
|
|
|
LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
|
|
|
|
#if defined(CONFIG_SCHED_DUMB)
|
|
#define _priq_run_add z_priq_dumb_add
|
|
#define _priq_run_remove z_priq_dumb_remove
|
|
# if defined(CONFIG_SCHED_CPU_MASK)
|
|
# define _priq_run_best _priq_dumb_mask_best
|
|
# else
|
|
# define _priq_run_best z_priq_dumb_best
|
|
# endif
|
|
#elif defined(CONFIG_SCHED_SCALABLE)
|
|
#define _priq_run_add z_priq_rb_add
|
|
#define _priq_run_remove z_priq_rb_remove
|
|
#define _priq_run_best z_priq_rb_best
|
|
#elif defined(CONFIG_SCHED_MULTIQ)
|
|
#define _priq_run_add z_priq_mq_add
|
|
#define _priq_run_remove z_priq_mq_remove
|
|
#define _priq_run_best z_priq_mq_best
|
|
static ALWAYS_INLINE void z_priq_mq_add(struct _priq_mq *pq,
|
|
struct k_thread *thread);
|
|
static ALWAYS_INLINE void z_priq_mq_remove(struct _priq_mq *pq,
|
|
struct k_thread *thread);
|
|
#endif
|
|
|
|
#if defined(CONFIG_WAITQ_SCALABLE)
|
|
#define z_priq_wait_add z_priq_rb_add
|
|
#define _priq_wait_remove z_priq_rb_remove
|
|
#define _priq_wait_best z_priq_rb_best
|
|
#elif defined(CONFIG_WAITQ_DUMB)
|
|
#define z_priq_wait_add z_priq_dumb_add
|
|
#define _priq_wait_remove z_priq_dumb_remove
|
|
#define _priq_wait_best z_priq_dumb_best
|
|
#endif
|
|
|
|
struct k_spinlock sched_spinlock;
|
|
|
|
static void update_cache(int preempt_ok);
|
|
static void end_thread(struct k_thread *thread);
|
|
|
|
|
|
static inline int is_preempt(struct k_thread *thread)
|
|
{
|
|
/* explanation in kernel_struct.h */
|
|
return thread->base.preempt <= _PREEMPT_THRESHOLD;
|
|
}
|
|
|
|
static inline int is_metairq(struct k_thread *thread)
|
|
{
|
|
#if CONFIG_NUM_METAIRQ_PRIORITIES > 0
|
|
return (thread->base.prio - K_HIGHEST_THREAD_PRIO)
|
|
< CONFIG_NUM_METAIRQ_PRIORITIES;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
#if CONFIG_ASSERT
|
|
static inline bool is_thread_dummy(struct k_thread *thread)
|
|
{
|
|
return (thread->base.thread_state & _THREAD_DUMMY) != 0U;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Return value same as e.g. memcmp
|
|
* > 0 -> thread 1 priority > thread 2 priority
|
|
* = 0 -> thread 1 priority == thread 2 priority
|
|
* < 0 -> thread 1 priority < thread 2 priority
|
|
* Do not rely on the actual value returned aside from the above.
|
|
* (Again, like memcmp.)
|
|
*/
|
|
int32_t z_sched_prio_cmp(struct k_thread *thread_1,
|
|
struct k_thread *thread_2)
|
|
{
|
|
/* `prio` is <32b, so the below cannot overflow. */
|
|
int32_t b1 = thread_1->base.prio;
|
|
int32_t b2 = thread_2->base.prio;
|
|
|
|
if (b1 != b2) {
|
|
return b2 - b1;
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_DEADLINE
|
|
/* If we assume all deadlines live within the same "half" of
|
|
* the 32 bit modulus space (this is a documented API rule),
|
|
* then the latest deadline in the queue minus the earliest is
|
|
* guaranteed to be (2's complement) non-negative. We can
|
|
* leverage that to compare the values without having to check
|
|
* the current time.
|
|
*/
|
|
uint32_t d1 = thread_1->base.prio_deadline;
|
|
uint32_t d2 = thread_2->base.prio_deadline;
|
|
|
|
if (d1 != d2) {
|
|
/* Sooner deadline means higher effective priority.
|
|
* Doing the calculation with unsigned types and casting
|
|
* to signed isn't perfect, but at least reduces this
|
|
* from UB on overflow to impdef.
|
|
*/
|
|
return (int32_t) (d2 - d1);
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static ALWAYS_INLINE bool should_preempt(struct k_thread *thread,
|
|
int preempt_ok)
|
|
{
|
|
/* Preemption is OK if it's being explicitly allowed by
|
|
* software state (e.g. the thread called k_yield())
|
|
*/
|
|
if (preempt_ok != 0) {
|
|
return true;
|
|
}
|
|
|
|
__ASSERT(_current != NULL, "");
|
|
|
|
/* Or if we're pended/suspended/dummy (duh) */
|
|
if (z_is_thread_prevented_from_running(_current)) {
|
|
return true;
|
|
}
|
|
|
|
/* Edge case on ARM where a thread can be pended out of an
|
|
* interrupt handler before the "synchronous" swap starts
|
|
* context switching. Platforms with atomic swap can never
|
|
* hit this.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_SWAP_NONATOMIC)
|
|
&& z_is_thread_timeout_active(thread)) {
|
|
return true;
|
|
}
|
|
|
|
/* Otherwise we have to be running a preemptible thread or
|
|
* switching to a metairq
|
|
*/
|
|
if (is_preempt(_current) || is_metairq(thread)) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_CPU_MASK
|
|
static ALWAYS_INLINE struct k_thread *_priq_dumb_mask_best(sys_dlist_t *pq)
|
|
{
|
|
/* With masks enabled we need to be prepared to walk the list
|
|
* looking for one we can run
|
|
*/
|
|
struct k_thread *thread;
|
|
|
|
SYS_DLIST_FOR_EACH_CONTAINER(pq, thread, base.qnode_dlist) {
|
|
if ((thread->base.cpu_mask & BIT(_current_cpu->id)) != 0) {
|
|
return thread;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
static ALWAYS_INLINE void z_priq_dumb_add(sys_dlist_t *pq,
|
|
struct k_thread *thread)
|
|
{
|
|
struct k_thread *t;
|
|
|
|
__ASSERT_NO_MSG(!z_is_idle_thread_object(thread));
|
|
|
|
SYS_DLIST_FOR_EACH_CONTAINER(pq, t, base.qnode_dlist) {
|
|
if (z_sched_prio_cmp(thread, t) > 0) {
|
|
sys_dlist_insert(&t->base.qnode_dlist,
|
|
&thread->base.qnode_dlist);
|
|
return;
|
|
}
|
|
}
|
|
|
|
sys_dlist_append(pq, &thread->base.qnode_dlist);
|
|
}
|
|
|
|
static ALWAYS_INLINE void *thread_runq(struct k_thread *thread)
|
|
{
|
|
#ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY
|
|
int cpu, m = thread->base.cpu_mask;
|
|
|
|
/* Edge case: it's legal per the API to "make runnable" a
|
|
* thread with all CPUs masked off (i.e. one that isn't
|
|
* actually runnable!). Sort of a wart in the API and maybe
|
|
* we should address this in docs/assertions instead to avoid
|
|
* the extra test.
|
|
*/
|
|
cpu = m == 0 ? 0 : u32_count_trailing_zeros(m);
|
|
|
|
return &_kernel.cpus[cpu].ready_q.runq;
|
|
#else
|
|
return &_kernel.ready_q.runq;
|
|
#endif
|
|
}
|
|
|
|
static ALWAYS_INLINE void *curr_cpu_runq(void)
|
|
{
|
|
#ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY
|
|
return &arch_curr_cpu()->ready_q.runq;
|
|
#else
|
|
return &_kernel.ready_q.runq;
|
|
#endif
|
|
}
|
|
|
|
static ALWAYS_INLINE void runq_add(struct k_thread *thread)
|
|
{
|
|
_priq_run_add(thread_runq(thread), thread);
|
|
}
|
|
|
|
static ALWAYS_INLINE void runq_remove(struct k_thread *thread)
|
|
{
|
|
_priq_run_remove(thread_runq(thread), thread);
|
|
}
|
|
|
|
static ALWAYS_INLINE struct k_thread *runq_best(void)
|
|
{
|
|
return _priq_run_best(curr_cpu_runq());
|
|
}
|
|
|
|
/* _current is never in the run queue until context switch on
|
|
* SMP configurations, see z_requeue_current()
|
|
*/
|
|
static inline bool should_queue_thread(struct k_thread *th)
|
|
{
|
|
return !IS_ENABLED(CONFIG_SMP) || th != _current;
|
|
}
|
|
|
|
static ALWAYS_INLINE void queue_thread(struct k_thread *thread)
|
|
{
|
|
thread->base.thread_state |= _THREAD_QUEUED;
|
|
if (should_queue_thread(thread)) {
|
|
runq_add(thread);
|
|
}
|
|
#ifdef CONFIG_SMP
|
|
if (thread == _current) {
|
|
/* add current to end of queue means "yield" */
|
|
_current_cpu->swap_ok = true;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static ALWAYS_INLINE void dequeue_thread(struct k_thread *thread)
|
|
{
|
|
thread->base.thread_state &= ~_THREAD_QUEUED;
|
|
if (should_queue_thread(thread)) {
|
|
runq_remove(thread);
|
|
}
|
|
}
|
|
|
|
static void signal_pending_ipi(void)
|
|
{
|
|
/* Synchronization note: you might think we need to lock these
|
|
* two steps, but an IPI is idempotent. It's OK if we do it
|
|
* twice. All we require is that if a CPU sees the flag true,
|
|
* it is guaranteed to send the IPI, and if a core sets
|
|
* pending_ipi, the IPI will be sent the next time through
|
|
* this code.
|
|
*/
|
|
#if defined(CONFIG_SMP) && defined(CONFIG_SCHED_IPI_SUPPORTED)
|
|
if (CONFIG_MP_NUM_CPUS > 1) {
|
|
if (_kernel.pending_ipi) {
|
|
_kernel.pending_ipi = false;
|
|
arch_sched_ipi();
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* Called out of z_swap() when CONFIG_SMP. The current thread can
|
|
* never live in the run queue until we are inexorably on the context
|
|
* switch path on SMP, otherwise there is a deadlock condition where a
|
|
* set of CPUs pick a cycle of threads to run and wait for them all to
|
|
* context switch forever.
|
|
*/
|
|
void z_requeue_current(struct k_thread *curr)
|
|
{
|
|
if (z_is_thread_queued(curr)) {
|
|
runq_add(curr);
|
|
}
|
|
signal_pending_ipi();
|
|
}
|
|
|
|
static inline bool is_aborting(struct k_thread *thread)
|
|
{
|
|
return (thread->base.thread_state & _THREAD_ABORTING) != 0U;
|
|
}
|
|
#endif
|
|
|
|
static ALWAYS_INLINE struct k_thread *next_up(void)
|
|
{
|
|
struct k_thread *thread = runq_best();
|
|
|
|
#if (CONFIG_NUM_METAIRQ_PRIORITIES > 0) && (CONFIG_NUM_COOP_PRIORITIES > 0)
|
|
/* MetaIRQs must always attempt to return back to a
|
|
* cooperative thread they preempted and not whatever happens
|
|
* to be highest priority now. The cooperative thread was
|
|
* promised it wouldn't be preempted (by non-metairq threads)!
|
|
*/
|
|
struct k_thread *mirqp = _current_cpu->metairq_preempted;
|
|
|
|
if (mirqp != NULL && (thread == NULL || !is_metairq(thread))) {
|
|
if (!z_is_thread_prevented_from_running(mirqp)) {
|
|
thread = mirqp;
|
|
} else {
|
|
_current_cpu->metairq_preempted = NULL;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef CONFIG_SMP
|
|
/* In uniprocessor mode, we can leave the current thread in
|
|
* the queue (actually we have to, otherwise the assembly
|
|
* context switch code for all architectures would be
|
|
* responsible for putting it back in z_swap and ISR return!),
|
|
* which makes this choice simple.
|
|
*/
|
|
return (thread != NULL) ? thread : _current_cpu->idle_thread;
|
|
#else
|
|
/* Under SMP, the "cache" mechanism for selecting the next
|
|
* thread doesn't work, so we have more work to do to test
|
|
* _current against the best choice from the queue. Here, the
|
|
* thread selected above represents "the best thread that is
|
|
* not current".
|
|
*
|
|
* Subtle note on "queued": in SMP mode, _current does not
|
|
* live in the queue, so this isn't exactly the same thing as
|
|
* "ready", it means "is _current already added back to the
|
|
* queue such that we don't want to re-add it".
|
|
*/
|
|
if (is_aborting(_current)) {
|
|
end_thread(_current);
|
|
}
|
|
|
|
bool queued = z_is_thread_queued(_current);
|
|
bool active = !z_is_thread_prevented_from_running(_current);
|
|
|
|
if (thread == NULL) {
|
|
thread = _current_cpu->idle_thread;
|
|
}
|
|
|
|
if (active) {
|
|
int32_t cmp = z_sched_prio_cmp(_current, thread);
|
|
|
|
/* Ties only switch if state says we yielded */
|
|
if ((cmp > 0) || ((cmp == 0) && !_current_cpu->swap_ok)) {
|
|
thread = _current;
|
|
}
|
|
|
|
if (!should_preempt(thread, _current_cpu->swap_ok)) {
|
|
thread = _current;
|
|
}
|
|
}
|
|
|
|
/* Put _current back into the queue */
|
|
if (thread != _current && active &&
|
|
!z_is_idle_thread_object(_current) && !queued) {
|
|
queue_thread(_current);
|
|
}
|
|
|
|
/* Take the new _current out of the queue */
|
|
if (z_is_thread_queued(thread)) {
|
|
dequeue_thread(thread);
|
|
}
|
|
|
|
_current_cpu->swap_ok = false;
|
|
return thread;
|
|
#endif
|
|
}
|
|
|
|
static void move_thread_to_end_of_prio_q(struct k_thread *thread)
|
|
{
|
|
if (z_is_thread_queued(thread)) {
|
|
dequeue_thread(thread);
|
|
}
|
|
queue_thread(thread);
|
|
update_cache(thread == _current);
|
|
}
|
|
|
|
#ifdef CONFIG_TIMESLICING
|
|
|
|
static int slice_ticks;
|
|
static int slice_max_prio;
|
|
|
|
static inline int slice_time(struct k_thread *curr)
|
|
{
|
|
int ret = slice_ticks;
|
|
|
|
#ifdef CONFIG_TIMESLICE_PER_THREAD
|
|
if (curr->base.slice_ticks != 0) {
|
|
ret = curr->base.slice_ticks;
|
|
}
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_SWAP_NONATOMIC
|
|
/* If z_swap() isn't atomic, then it's possible for a timer interrupt
|
|
* to try to timeslice away _current after it has already pended
|
|
* itself but before the corresponding context switch. Treat that as
|
|
* a noop condition in z_time_slice().
|
|
*/
|
|
static struct k_thread *pending_current;
|
|
#endif
|
|
|
|
void z_reset_time_slice(struct k_thread *curr)
|
|
{
|
|
/* Add the elapsed time since the last announced tick to the
|
|
* slice count, as we'll see those "expired" ticks arrive in a
|
|
* FUTURE z_time_slice() call.
|
|
*/
|
|
if (slice_time(curr) != 0) {
|
|
_current_cpu->slice_ticks = slice_time(curr) + sys_clock_elapsed();
|
|
z_set_timeout_expiry(slice_time(curr), false);
|
|
}
|
|
}
|
|
|
|
void k_sched_time_slice_set(int32_t slice, int prio)
|
|
{
|
|
LOCKED(&sched_spinlock) {
|
|
_current_cpu->slice_ticks = 0;
|
|
slice_ticks = k_ms_to_ticks_ceil32(slice);
|
|
if (IS_ENABLED(CONFIG_TICKLESS_KERNEL) && slice > 0) {
|
|
/* It's not possible to reliably set a 1-tick
|
|
* timeout if ticks aren't regular.
|
|
*/
|
|
slice_ticks = MAX(2, slice_ticks);
|
|
}
|
|
slice_max_prio = prio;
|
|
z_reset_time_slice(_current);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_TIMESLICE_PER_THREAD
|
|
void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks,
|
|
k_thread_timeslice_fn_t expired, void *data)
|
|
{
|
|
LOCKED(&sched_spinlock) {
|
|
th->base.slice_ticks = slice_ticks;
|
|
th->base.slice_expired = expired;
|
|
th->base.slice_data = data;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static inline bool sliceable(struct k_thread *thread)
|
|
{
|
|
bool ret = is_preempt(thread)
|
|
&& !z_is_thread_prevented_from_running(thread)
|
|
&& !z_is_prio_higher(thread->base.prio, slice_max_prio)
|
|
&& !z_is_idle_thread_object(thread);
|
|
|
|
#ifdef CONFIG_TIMESLICE_PER_THREAD
|
|
ret |= thread->base.slice_ticks != 0;
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
static k_spinlock_key_t slice_expired_locked(k_spinlock_key_t sched_lock_key)
|
|
{
|
|
struct k_thread *curr = _current;
|
|
|
|
#ifdef CONFIG_TIMESLICE_PER_THREAD
|
|
if (curr->base.slice_expired) {
|
|
k_spin_unlock(&sched_spinlock, sched_lock_key);
|
|
curr->base.slice_expired(curr, curr->base.slice_data);
|
|
sched_lock_key = k_spin_lock(&sched_spinlock);
|
|
}
|
|
#endif
|
|
if (!z_is_thread_prevented_from_running(curr)) {
|
|
move_thread_to_end_of_prio_q(curr);
|
|
}
|
|
z_reset_time_slice(curr);
|
|
|
|
return sched_lock_key;
|
|
}
|
|
|
|
/* Called out of each timer interrupt */
|
|
void z_time_slice(int ticks)
|
|
{
|
|
/* Hold sched_spinlock, so that activity on another CPU
|
|
* (like a call to k_thread_abort() at just the wrong time)
|
|
* won't affect the correctness of the decisions made here.
|
|
* Also prevents any nested interrupts from changing
|
|
* thread state to avoid similar issues, since this would
|
|
* normally run with IRQs enabled.
|
|
*/
|
|
k_spinlock_key_t key = k_spin_lock(&sched_spinlock);
|
|
|
|
#ifdef CONFIG_SWAP_NONATOMIC
|
|
if (pending_current == _current) {
|
|
z_reset_time_slice(_current);
|
|
k_spin_unlock(&sched_spinlock, key);
|
|
return;
|
|
}
|
|
pending_current = NULL;
|
|
#endif
|
|
|
|
if (slice_time(_current) && sliceable(_current)) {
|
|
if (ticks >= _current_cpu->slice_ticks) {
|
|
/* Note: this will (if so enabled) internally
|
|
* drop and reacquire the scheduler lock
|
|
* around the callback! Don't put anything
|
|
* after this line that requires
|
|
* synchronization.
|
|
*/
|
|
key = slice_expired_locked(key);
|
|
} else {
|
|
_current_cpu->slice_ticks -= ticks;
|
|
}
|
|
} else {
|
|
_current_cpu->slice_ticks = 0;
|
|
}
|
|
k_spin_unlock(&sched_spinlock, key);
|
|
}
|
|
#endif
|
|
|
|
/* Track cooperative threads preempted by metairqs so we can return to
|
|
* them specifically. Called at the moment a new thread has been
|
|
* selected to run.
|
|
*/
|
|
static void update_metairq_preempt(struct k_thread *thread)
|
|
{
|
|
#if (CONFIG_NUM_METAIRQ_PRIORITIES > 0) && (CONFIG_NUM_COOP_PRIORITIES > 0)
|
|
if (is_metairq(thread) && !is_metairq(_current) &&
|
|
!is_preempt(_current)) {
|
|
/* Record new preemption */
|
|
_current_cpu->metairq_preempted = _current;
|
|
} else if (!is_metairq(thread) && !z_is_idle_thread_object(thread)) {
|
|
/* Returning from existing preemption */
|
|
_current_cpu->metairq_preempted = NULL;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void update_cache(int preempt_ok)
|
|
{
|
|
#ifndef CONFIG_SMP
|
|
struct k_thread *thread = next_up();
|
|
|
|
if (should_preempt(thread, preempt_ok)) {
|
|
#ifdef CONFIG_TIMESLICING
|
|
if (thread != _current) {
|
|
z_reset_time_slice(thread);
|
|
}
|
|
#endif
|
|
update_metairq_preempt(thread);
|
|
_kernel.ready_q.cache = thread;
|
|
} else {
|
|
_kernel.ready_q.cache = _current;
|
|
}
|
|
|
|
#else
|
|
/* The way this works is that the CPU record keeps its
|
|
* "cooperative swapping is OK" flag until the next reschedule
|
|
* call or context switch. It doesn't need to be tracked per
|
|
* thread because if the thread gets preempted for whatever
|
|
* reason the scheduler will make the same decision anyway.
|
|
*/
|
|
_current_cpu->swap_ok = preempt_ok;
|
|
#endif
|
|
}
|
|
|
|
static bool thread_active_elsewhere(struct k_thread *thread)
|
|
{
|
|
/* True if the thread is currently running on another CPU.
|
|
* There are more scalable designs to answer this question in
|
|
* constant time, but this is fine for now.
|
|
*/
|
|
#ifdef CONFIG_SMP
|
|
int currcpu = _current_cpu->id;
|
|
|
|
unsigned int num_cpus = arch_num_cpus();
|
|
|
|
for (int i = 0; i < num_cpus; i++) {
|
|
if ((i != currcpu) &&
|
|
(_kernel.cpus[i].current == thread)) {
|
|
return true;
|
|
}
|
|
}
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
static void flag_ipi(void)
|
|
{
|
|
#if defined(CONFIG_SMP) && defined(CONFIG_SCHED_IPI_SUPPORTED)
|
|
if (CONFIG_MP_NUM_CPUS > 1) {
|
|
_kernel.pending_ipi = true;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void ready_thread(struct k_thread *thread)
|
|
{
|
|
#ifdef CONFIG_KERNEL_COHERENCE
|
|
__ASSERT_NO_MSG(arch_mem_coherent(thread));
|
|
#endif
|
|
|
|
/* If thread is queued already, do not try and added it to the
|
|
* run queue again
|
|
*/
|
|
if (!z_is_thread_queued(thread) && z_is_thread_ready(thread)) {
|
|
SYS_PORT_TRACING_OBJ_FUNC(k_thread, sched_ready, thread);
|
|
|
|
queue_thread(thread);
|
|
update_cache(0);
|
|
flag_ipi();
|
|
}
|
|
}
|
|
|
|
void z_ready_thread(struct k_thread *thread)
|
|
{
|
|
LOCKED(&sched_spinlock) {
|
|
if (!thread_active_elsewhere(thread)) {
|
|
ready_thread(thread);
|
|
}
|
|
}
|
|
}
|
|
|
|
void z_move_thread_to_end_of_prio_q(struct k_thread *thread)
|
|
{
|
|
LOCKED(&sched_spinlock) {
|
|
move_thread_to_end_of_prio_q(thread);
|
|
}
|
|
}
|
|
|
|
void z_sched_start(struct k_thread *thread)
|
|
{
|
|
k_spinlock_key_t key = k_spin_lock(&sched_spinlock);
|
|
|
|
if (z_has_thread_started(thread)) {
|
|
k_spin_unlock(&sched_spinlock, key);
|
|
return;
|
|
}
|
|
|
|
z_mark_thread_as_started(thread);
|
|
ready_thread(thread);
|
|
z_reschedule(&sched_spinlock, key);
|
|
}
|
|
|
|
void z_impl_k_thread_suspend(struct k_thread *thread)
|
|
{
|
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, suspend, thread);
|
|
|
|
(void)z_abort_thread_timeout(thread);
|
|
|
|
LOCKED(&sched_spinlock) {
|
|
if (z_is_thread_queued(thread)) {
|
|
dequeue_thread(thread);
|
|
}
|
|
z_mark_thread_as_suspended(thread);
|
|
update_cache(thread == _current);
|
|
}
|
|
|
|
if (thread == _current) {
|
|
z_reschedule_unlocked();
|
|
}
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, suspend, thread);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline void z_vrfy_k_thread_suspend(struct k_thread *thread)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
|
|
z_impl_k_thread_suspend(thread);
|
|
}
|
|
#include <syscalls/k_thread_suspend_mrsh.c>
|
|
#endif
|
|
|
|
void z_impl_k_thread_resume(struct k_thread *thread)
|
|
{
|
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, resume, thread);
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&sched_spinlock);
|
|
|
|
/* Do not try to resume a thread that was not suspended */
|
|
if (!z_is_thread_suspended(thread)) {
|
|
k_spin_unlock(&sched_spinlock, key);
|
|
return;
|
|
}
|
|
|
|
z_mark_thread_as_not_suspended(thread);
|
|
ready_thread(thread);
|
|
|
|
z_reschedule(&sched_spinlock, key);
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, resume, thread);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline void z_vrfy_k_thread_resume(struct k_thread *thread)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
|
|
z_impl_k_thread_resume(thread);
|
|
}
|
|
#include <syscalls/k_thread_resume_mrsh.c>
|
|
#endif
|
|
|
|
static _wait_q_t *pended_on_thread(struct k_thread *thread)
|
|
{
|
|
__ASSERT_NO_MSG(thread->base.pended_on);
|
|
|
|
return thread->base.pended_on;
|
|
}
|
|
|
|
static void unready_thread(struct k_thread *thread)
|
|
{
|
|
if (z_is_thread_queued(thread)) {
|
|
dequeue_thread(thread);
|
|
}
|
|
update_cache(thread == _current);
|
|
}
|
|
|
|
/* sched_spinlock must be held */
|
|
static void add_to_waitq_locked(struct k_thread *thread, _wait_q_t *wait_q)
|
|
{
|
|
unready_thread(thread);
|
|
z_mark_thread_as_pending(thread);
|
|
|
|
SYS_PORT_TRACING_FUNC(k_thread, sched_pend, thread);
|
|
|
|
if (wait_q != NULL) {
|
|
thread->base.pended_on = wait_q;
|
|
z_priq_wait_add(&wait_q->waitq, thread);
|
|
}
|
|
}
|
|
|
|
static void add_thread_timeout(struct k_thread *thread, k_timeout_t timeout)
|
|
{
|
|
if (!K_TIMEOUT_EQ(timeout, K_FOREVER)) {
|
|
z_add_thread_timeout(thread, timeout);
|
|
}
|
|
}
|
|
|
|
static void pend_locked(struct k_thread *thread, _wait_q_t *wait_q,
|
|
k_timeout_t timeout)
|
|
{
|
|
#ifdef CONFIG_KERNEL_COHERENCE
|
|
__ASSERT_NO_MSG(wait_q == NULL || arch_mem_coherent(wait_q));
|
|
#endif
|
|
add_to_waitq_locked(thread, wait_q);
|
|
add_thread_timeout(thread, timeout);
|
|
}
|
|
|
|
void z_pend_thread(struct k_thread *thread, _wait_q_t *wait_q,
|
|
k_timeout_t timeout)
|
|
{
|
|
__ASSERT_NO_MSG(thread == _current || is_thread_dummy(thread));
|
|
LOCKED(&sched_spinlock) {
|
|
pend_locked(thread, wait_q, timeout);
|
|
}
|
|
}
|
|
|
|
static inline void unpend_thread_no_timeout(struct k_thread *thread)
|
|
{
|
|
_priq_wait_remove(&pended_on_thread(thread)->waitq, thread);
|
|
z_mark_thread_as_not_pending(thread);
|
|
thread->base.pended_on = NULL;
|
|
}
|
|
|
|
ALWAYS_INLINE void z_unpend_thread_no_timeout(struct k_thread *thread)
|
|
{
|
|
LOCKED(&sched_spinlock) {
|
|
unpend_thread_no_timeout(thread);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SYS_CLOCK_EXISTS
|
|
/* Timeout handler for *_thread_timeout() APIs */
|
|
void z_thread_timeout(struct _timeout *timeout)
|
|
{
|
|
struct k_thread *thread = CONTAINER_OF(timeout,
|
|
struct k_thread, base.timeout);
|
|
|
|
LOCKED(&sched_spinlock) {
|
|
bool killed = ((thread->base.thread_state & _THREAD_DEAD) ||
|
|
(thread->base.thread_state & _THREAD_ABORTING));
|
|
|
|
if (!killed) {
|
|
if (thread->base.pended_on != NULL) {
|
|
unpend_thread_no_timeout(thread);
|
|
}
|
|
z_mark_thread_as_started(thread);
|
|
z_mark_thread_as_not_suspended(thread);
|
|
ready_thread(thread);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
int z_pend_curr_irqlock(uint32_t key, _wait_q_t *wait_q, k_timeout_t timeout)
|
|
{
|
|
/* This is a legacy API for pre-switch architectures and isn't
|
|
* correctly synchronized for multi-cpu use
|
|
*/
|
|
__ASSERT_NO_MSG(!IS_ENABLED(CONFIG_SMP));
|
|
|
|
pend_locked(_current, wait_q, timeout);
|
|
|
|
#if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC)
|
|
pending_current = _current;
|
|
|
|
int ret = z_swap_irqlock(key);
|
|
LOCKED(&sched_spinlock) {
|
|
if (pending_current == _current) {
|
|
pending_current = NULL;
|
|
}
|
|
}
|
|
return ret;
|
|
#else
|
|
return z_swap_irqlock(key);
|
|
#endif
|
|
}
|
|
|
|
int z_pend_curr(struct k_spinlock *lock, k_spinlock_key_t key,
|
|
_wait_q_t *wait_q, k_timeout_t timeout)
|
|
{
|
|
#if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC)
|
|
pending_current = _current;
|
|
#endif
|
|
__ASSERT_NO_MSG(sizeof(sched_spinlock) == 0 || lock != &sched_spinlock);
|
|
|
|
/* We do a "lock swap" prior to calling z_swap(), such that
|
|
* the caller's lock gets released as desired. But we ensure
|
|
* that we hold the scheduler lock and leave local interrupts
|
|
* masked until we reach the context swich. z_swap() itself
|
|
* has similar code; the duplication is because it's a legacy
|
|
* API that doesn't expect to be called with scheduler lock
|
|
* held.
|
|
*/
|
|
(void) k_spin_lock(&sched_spinlock);
|
|
pend_locked(_current, wait_q, timeout);
|
|
k_spin_release(lock);
|
|
return z_swap(&sched_spinlock, key);
|
|
}
|
|
|
|
struct k_thread *z_unpend1_no_timeout(_wait_q_t *wait_q)
|
|
{
|
|
struct k_thread *thread = NULL;
|
|
|
|
LOCKED(&sched_spinlock) {
|
|
thread = _priq_wait_best(&wait_q->waitq);
|
|
|
|
if (thread != NULL) {
|
|
unpend_thread_no_timeout(thread);
|
|
}
|
|
}
|
|
|
|
return thread;
|
|
}
|
|
|
|
struct k_thread *z_unpend_first_thread(_wait_q_t *wait_q)
|
|
{
|
|
struct k_thread *thread = NULL;
|
|
|
|
LOCKED(&sched_spinlock) {
|
|
thread = _priq_wait_best(&wait_q->waitq);
|
|
|
|
if (thread != NULL) {
|
|
unpend_thread_no_timeout(thread);
|
|
(void)z_abort_thread_timeout(thread);
|
|
}
|
|
}
|
|
|
|
return thread;
|
|
}
|
|
|
|
void z_unpend_thread(struct k_thread *thread)
|
|
{
|
|
z_unpend_thread_no_timeout(thread);
|
|
(void)z_abort_thread_timeout(thread);
|
|
}
|
|
|
|
/* Priority set utility that does no rescheduling, it just changes the
|
|
* run queue state, returning true if a reschedule is needed later.
|
|
*/
|
|
bool z_set_prio(struct k_thread *thread, int prio)
|
|
{
|
|
bool need_sched = 0;
|
|
|
|
LOCKED(&sched_spinlock) {
|
|
need_sched = z_is_thread_ready(thread);
|
|
|
|
if (need_sched) {
|
|
/* Don't requeue on SMP if it's the running thread */
|
|
if (!IS_ENABLED(CONFIG_SMP) || z_is_thread_queued(thread)) {
|
|
dequeue_thread(thread);
|
|
thread->base.prio = prio;
|
|
queue_thread(thread);
|
|
} else {
|
|
thread->base.prio = prio;
|
|
}
|
|
update_cache(1);
|
|
} else {
|
|
thread->base.prio = prio;
|
|
}
|
|
}
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC(k_thread, sched_priority_set, thread, prio);
|
|
|
|
return need_sched;
|
|
}
|
|
|
|
void z_thread_priority_set(struct k_thread *thread, int prio)
|
|
{
|
|
bool need_sched = z_set_prio(thread, prio);
|
|
|
|
flag_ipi();
|
|
|
|
if (need_sched && _current->base.sched_locked == 0U) {
|
|
z_reschedule_unlocked();
|
|
}
|
|
}
|
|
|
|
static inline bool resched(uint32_t key)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
_current_cpu->swap_ok = 0;
|
|
#endif
|
|
|
|
return arch_irq_unlocked(key) && !arch_is_in_isr();
|
|
}
|
|
|
|
/*
|
|
* Check if the next ready thread is the same as the current thread
|
|
* and save the trip if true.
|
|
*/
|
|
static inline bool need_swap(void)
|
|
{
|
|
/* the SMP case will be handled in C based z_swap() */
|
|
#ifdef CONFIG_SMP
|
|
return true;
|
|
#else
|
|
struct k_thread *new_thread;
|
|
|
|
/* Check if the next ready thread is the same as the current thread */
|
|
new_thread = _kernel.ready_q.cache;
|
|
return new_thread != _current;
|
|
#endif
|
|
}
|
|
|
|
void z_reschedule(struct k_spinlock *lock, k_spinlock_key_t key)
|
|
{
|
|
if (resched(key.key) && need_swap()) {
|
|
z_swap(lock, key);
|
|
} else {
|
|
k_spin_unlock(lock, key);
|
|
signal_pending_ipi();
|
|
}
|
|
}
|
|
|
|
void z_reschedule_irqlock(uint32_t key)
|
|
{
|
|
if (resched(key)) {
|
|
z_swap_irqlock(key);
|
|
} else {
|
|
irq_unlock(key);
|
|
signal_pending_ipi();
|
|
}
|
|
}
|
|
|
|
void k_sched_lock(void)
|
|
{
|
|
LOCKED(&sched_spinlock) {
|
|
SYS_PORT_TRACING_FUNC(k_thread, sched_lock);
|
|
|
|
z_sched_lock();
|
|
}
|
|
}
|
|
|
|
void k_sched_unlock(void)
|
|
{
|
|
LOCKED(&sched_spinlock) {
|
|
__ASSERT(_current->base.sched_locked != 0U, "");
|
|
__ASSERT(!arch_is_in_isr(), "");
|
|
|
|
++_current->base.sched_locked;
|
|
update_cache(0);
|
|
}
|
|
|
|
LOG_DBG("scheduler unlocked (%p:%d)",
|
|
_current, _current->base.sched_locked);
|
|
|
|
SYS_PORT_TRACING_FUNC(k_thread, sched_unlock);
|
|
|
|
z_reschedule_unlocked();
|
|
}
|
|
|
|
struct k_thread *z_swap_next_thread(void)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
struct k_thread *ret = next_up();
|
|
|
|
if (ret == _current) {
|
|
/* When not swapping, have to signal IPIs here. In
|
|
* the context switch case it must happen later, after
|
|
* _current gets requeued.
|
|
*/
|
|
signal_pending_ipi();
|
|
}
|
|
return ret;
|
|
#else
|
|
return _kernel.ready_q.cache;
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_USE_SWITCH
|
|
/* Just a wrapper around _current = xxx with tracing */
|
|
static inline void set_current(struct k_thread *new_thread)
|
|
{
|
|
z_thread_mark_switched_out();
|
|
_current_cpu->current = new_thread;
|
|
}
|
|
|
|
/**
|
|
* @brief Determine next thread to execute upon completion of an interrupt
|
|
*
|
|
* Thread preemption is performed by context switching after the completion
|
|
* of a non-recursed interrupt. This function determines which thread to
|
|
* switch to if any. This function accepts as @p interrupted either:
|
|
*
|
|
* - The handle for the interrupted thread in which case the thread's context
|
|
* must already be fully saved and ready to be picked up by a different CPU.
|
|
*
|
|
* - NULL if more work is required to fully save the thread's state after
|
|
* it is known that a new thread is to be scheduled. It is up to the caller
|
|
* to store the handle resulting from the thread that is being switched out
|
|
* in that thread's "switch_handle" field after its
|
|
* context has fully been saved, following the same requirements as with
|
|
* the @ref arch_switch() function.
|
|
*
|
|
* If a new thread needs to be scheduled then its handle is returned.
|
|
* Otherwise the same value provided as @p interrupted is returned back.
|
|
* Those handles are the same opaque types used by the @ref arch_switch()
|
|
* function.
|
|
*
|
|
* @warning
|
|
* The @ref _current value may have changed after this call and not refer
|
|
* to the interrupted thread anymore. It might be necessary to make a local
|
|
* copy before calling this function.
|
|
*
|
|
* @param interrupted Handle for the thread that was interrupted or NULL.
|
|
* @retval Handle for the next thread to execute, or @p interrupted when
|
|
* no new thread is to be scheduled.
|
|
*/
|
|
void *z_get_next_switch_handle(void *interrupted)
|
|
{
|
|
z_check_stack_sentinel();
|
|
|
|
#ifdef CONFIG_SMP
|
|
void *ret = NULL;
|
|
|
|
LOCKED(&sched_spinlock) {
|
|
struct k_thread *old_thread = _current, *new_thread;
|
|
|
|
if (IS_ENABLED(CONFIG_SMP)) {
|
|
old_thread->switch_handle = NULL;
|
|
}
|
|
new_thread = next_up();
|
|
|
|
z_sched_usage_switch(new_thread);
|
|
|
|
if (old_thread != new_thread) {
|
|
update_metairq_preempt(new_thread);
|
|
wait_for_switch(new_thread);
|
|
arch_cohere_stacks(old_thread, interrupted, new_thread);
|
|
|
|
_current_cpu->swap_ok = 0;
|
|
set_current(new_thread);
|
|
|
|
#ifdef CONFIG_TIMESLICING
|
|
z_reset_time_slice(new_thread);
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPIN_VALIDATE
|
|
/* Changed _current! Update the spinlock
|
|
* bookkeeping so the validation doesn't get
|
|
* confused when the "wrong" thread tries to
|
|
* release the lock.
|
|
*/
|
|
z_spin_lock_set_owner(&sched_spinlock);
|
|
#endif
|
|
|
|
/* A queued (runnable) old/current thread
|
|
* needs to be added back to the run queue
|
|
* here, and atomically with its switch handle
|
|
* being set below. This is safe now, as we
|
|
* will not return into it.
|
|
*/
|
|
if (z_is_thread_queued(old_thread)) {
|
|
runq_add(old_thread);
|
|
}
|
|
}
|
|
old_thread->switch_handle = interrupted;
|
|
ret = new_thread->switch_handle;
|
|
if (IS_ENABLED(CONFIG_SMP)) {
|
|
/* Active threads MUST have a null here */
|
|
new_thread->switch_handle = NULL;
|
|
}
|
|
}
|
|
signal_pending_ipi();
|
|
return ret;
|
|
#else
|
|
z_sched_usage_switch(_kernel.ready_q.cache);
|
|
_current->switch_handle = interrupted;
|
|
set_current(_kernel.ready_q.cache);
|
|
return _current->switch_handle;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
void z_priq_dumb_remove(sys_dlist_t *pq, struct k_thread *thread)
|
|
{
|
|
__ASSERT_NO_MSG(!z_is_idle_thread_object(thread));
|
|
|
|
sys_dlist_remove(&thread->base.qnode_dlist);
|
|
}
|
|
|
|
struct k_thread *z_priq_dumb_best(sys_dlist_t *pq)
|
|
{
|
|
struct k_thread *thread = NULL;
|
|
sys_dnode_t *n = sys_dlist_peek_head(pq);
|
|
|
|
if (n != NULL) {
|
|
thread = CONTAINER_OF(n, struct k_thread, base.qnode_dlist);
|
|
}
|
|
return thread;
|
|
}
|
|
|
|
bool z_priq_rb_lessthan(struct rbnode *a, struct rbnode *b)
|
|
{
|
|
struct k_thread *thread_a, *thread_b;
|
|
int32_t cmp;
|
|
|
|
thread_a = CONTAINER_OF(a, struct k_thread, base.qnode_rb);
|
|
thread_b = CONTAINER_OF(b, struct k_thread, base.qnode_rb);
|
|
|
|
cmp = z_sched_prio_cmp(thread_a, thread_b);
|
|
|
|
if (cmp > 0) {
|
|
return true;
|
|
} else if (cmp < 0) {
|
|
return false;
|
|
} else {
|
|
return thread_a->base.order_key < thread_b->base.order_key
|
|
? 1 : 0;
|
|
}
|
|
}
|
|
|
|
void z_priq_rb_add(struct _priq_rb *pq, struct k_thread *thread)
|
|
{
|
|
struct k_thread *t;
|
|
|
|
__ASSERT_NO_MSG(!z_is_idle_thread_object(thread));
|
|
|
|
thread->base.order_key = pq->next_order_key++;
|
|
|
|
/* Renumber at wraparound. This is tiny code, and in practice
|
|
* will almost never be hit on real systems. BUT on very
|
|
* long-running systems where a priq never completely empties
|
|
* AND that contains very large numbers of threads, it can be
|
|
* a latency glitch to loop over all the threads like this.
|
|
*/
|
|
if (!pq->next_order_key) {
|
|
RB_FOR_EACH_CONTAINER(&pq->tree, t, base.qnode_rb) {
|
|
t->base.order_key = pq->next_order_key++;
|
|
}
|
|
}
|
|
|
|
rb_insert(&pq->tree, &thread->base.qnode_rb);
|
|
}
|
|
|
|
void z_priq_rb_remove(struct _priq_rb *pq, struct k_thread *thread)
|
|
{
|
|
__ASSERT_NO_MSG(!z_is_idle_thread_object(thread));
|
|
|
|
rb_remove(&pq->tree, &thread->base.qnode_rb);
|
|
|
|
if (!pq->tree.root) {
|
|
pq->next_order_key = 0;
|
|
}
|
|
}
|
|
|
|
struct k_thread *z_priq_rb_best(struct _priq_rb *pq)
|
|
{
|
|
struct k_thread *thread = NULL;
|
|
struct rbnode *n = rb_get_min(&pq->tree);
|
|
|
|
if (n != NULL) {
|
|
thread = CONTAINER_OF(n, struct k_thread, base.qnode_rb);
|
|
}
|
|
return thread;
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_MULTIQ
|
|
# if (K_LOWEST_THREAD_PRIO - K_HIGHEST_THREAD_PRIO) > 31
|
|
# error Too many priorities for multiqueue scheduler (max 32)
|
|
# endif
|
|
|
|
static ALWAYS_INLINE void z_priq_mq_add(struct _priq_mq *pq,
|
|
struct k_thread *thread)
|
|
{
|
|
int priority_bit = thread->base.prio - K_HIGHEST_THREAD_PRIO;
|
|
|
|
sys_dlist_append(&pq->queues[priority_bit], &thread->base.qnode_dlist);
|
|
pq->bitmask |= BIT(priority_bit);
|
|
}
|
|
|
|
static ALWAYS_INLINE void z_priq_mq_remove(struct _priq_mq *pq,
|
|
struct k_thread *thread)
|
|
{
|
|
int priority_bit = thread->base.prio - K_HIGHEST_THREAD_PRIO;
|
|
|
|
sys_dlist_remove(&thread->base.qnode_dlist);
|
|
if (sys_dlist_is_empty(&pq->queues[priority_bit])) {
|
|
pq->bitmask &= ~BIT(priority_bit);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
struct k_thread *z_priq_mq_best(struct _priq_mq *pq)
|
|
{
|
|
if (!pq->bitmask) {
|
|
return NULL;
|
|
}
|
|
|
|
struct k_thread *thread = NULL;
|
|
sys_dlist_t *l = &pq->queues[__builtin_ctz(pq->bitmask)];
|
|
sys_dnode_t *n = sys_dlist_peek_head(l);
|
|
|
|
if (n != NULL) {
|
|
thread = CONTAINER_OF(n, struct k_thread, base.qnode_dlist);
|
|
}
|
|
return thread;
|
|
}
|
|
|
|
int z_unpend_all(_wait_q_t *wait_q)
|
|
{
|
|
int need_sched = 0;
|
|
struct k_thread *thread;
|
|
|
|
while ((thread = z_waitq_head(wait_q)) != NULL) {
|
|
z_unpend_thread(thread);
|
|
z_ready_thread(thread);
|
|
need_sched = 1;
|
|
}
|
|
|
|
return need_sched;
|
|
}
|
|
|
|
void init_ready_q(struct _ready_q *rq)
|
|
{
|
|
#if defined(CONFIG_SCHED_SCALABLE)
|
|
rq->runq = (struct _priq_rb) {
|
|
.tree = {
|
|
.lessthan_fn = z_priq_rb_lessthan,
|
|
}
|
|
};
|
|
#elif defined(CONFIG_SCHED_MULTIQ)
|
|
for (int i = 0; i < ARRAY_SIZE(_kernel.ready_q.runq.queues); i++) {
|
|
sys_dlist_init(&rq->runq.queues[i]);
|
|
}
|
|
#else
|
|
sys_dlist_init(&rq->runq);
|
|
#endif
|
|
}
|
|
|
|
void z_sched_init(void)
|
|
{
|
|
#ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY
|
|
unsigned int num_cpus = arch_num_cpus();
|
|
|
|
for (int i = 0; i < num_cpus; i++) {
|
|
init_ready_q(&_kernel.cpus[i].ready_q);
|
|
}
|
|
#else
|
|
init_ready_q(&_kernel.ready_q);
|
|
#endif
|
|
|
|
#ifdef CONFIG_TIMESLICING
|
|
k_sched_time_slice_set(CONFIG_TIMESLICE_SIZE,
|
|
CONFIG_TIMESLICE_PRIORITY);
|
|
#endif
|
|
}
|
|
|
|
int z_impl_k_thread_priority_get(k_tid_t thread)
|
|
{
|
|
return thread->base.prio;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline int z_vrfy_k_thread_priority_get(k_tid_t thread)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
|
|
return z_impl_k_thread_priority_get(thread);
|
|
}
|
|
#include <syscalls/k_thread_priority_get_mrsh.c>
|
|
#endif
|
|
|
|
void z_impl_k_thread_priority_set(k_tid_t thread, int prio)
|
|
{
|
|
/*
|
|
* Use NULL, since we cannot know what the entry point is (we do not
|
|
* keep track of it) and idle cannot change its priority.
|
|
*/
|
|
Z_ASSERT_VALID_PRIO(prio, NULL);
|
|
__ASSERT(!arch_is_in_isr(), "");
|
|
|
|
struct k_thread *th = (struct k_thread *)thread;
|
|
|
|
z_thread_priority_set(th, prio);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline void z_vrfy_k_thread_priority_set(k_tid_t thread, int prio)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
|
|
Z_OOPS(Z_SYSCALL_VERIFY_MSG(_is_valid_prio(prio, NULL),
|
|
"invalid thread priority %d", prio));
|
|
Z_OOPS(Z_SYSCALL_VERIFY_MSG((int8_t)prio >= thread->base.prio,
|
|
"thread priority may only be downgraded (%d < %d)",
|
|
prio, thread->base.prio));
|
|
|
|
z_impl_k_thread_priority_set(thread, prio);
|
|
}
|
|
#include <syscalls/k_thread_priority_set_mrsh.c>
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHED_DEADLINE
|
|
void z_impl_k_thread_deadline_set(k_tid_t tid, int deadline)
|
|
{
|
|
struct k_thread *thread = tid;
|
|
|
|
LOCKED(&sched_spinlock) {
|
|
thread->base.prio_deadline = k_cycle_get_32() + deadline;
|
|
if (z_is_thread_queued(thread)) {
|
|
dequeue_thread(thread);
|
|
queue_thread(thread);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline void z_vrfy_k_thread_deadline_set(k_tid_t tid, int deadline)
|
|
{
|
|
struct k_thread *thread = tid;
|
|
|
|
Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
|
|
Z_OOPS(Z_SYSCALL_VERIFY_MSG(deadline > 0,
|
|
"invalid thread deadline %d",
|
|
(int)deadline));
|
|
|
|
z_impl_k_thread_deadline_set((k_tid_t)thread, deadline);
|
|
}
|
|
#include <syscalls/k_thread_deadline_set_mrsh.c>
|
|
#endif
|
|
#endif
|
|
|
|
bool k_can_yield(void)
|
|
{
|
|
return !(k_is_pre_kernel() || k_is_in_isr() ||
|
|
z_is_idle_thread_object(_current));
|
|
}
|
|
|
|
void z_impl_k_yield(void)
|
|
{
|
|
__ASSERT(!arch_is_in_isr(), "");
|
|
|
|
SYS_PORT_TRACING_FUNC(k_thread, yield);
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&sched_spinlock);
|
|
|
|
if (!IS_ENABLED(CONFIG_SMP) ||
|
|
z_is_thread_queued(_current)) {
|
|
dequeue_thread(_current);
|
|
}
|
|
queue_thread(_current);
|
|
update_cache(1);
|
|
z_swap(&sched_spinlock, key);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline void z_vrfy_k_yield(void)
|
|
{
|
|
z_impl_k_yield();
|
|
}
|
|
#include <syscalls/k_yield_mrsh.c>
|
|
#endif
|
|
|
|
static int32_t z_tick_sleep(k_ticks_t ticks)
|
|
{
|
|
#ifdef CONFIG_MULTITHREADING
|
|
uint32_t expected_wakeup_ticks;
|
|
|
|
__ASSERT(!arch_is_in_isr(), "");
|
|
|
|
#ifndef CONFIG_TIMEOUT_64BIT
|
|
/* LOG subsys does not handle 64-bit values
|
|
* https://github.com/zephyrproject-rtos/zephyr/issues/26246
|
|
*/
|
|
LOG_DBG("thread %p for %u ticks", _current, ticks);
|
|
#endif
|
|
|
|
/* wait of 0 ms is treated as a 'yield' */
|
|
if (ticks == 0) {
|
|
k_yield();
|
|
return 0;
|
|
}
|
|
|
|
k_timeout_t timeout = Z_TIMEOUT_TICKS(ticks);
|
|
if (Z_TICK_ABS(ticks) <= 0) {
|
|
expected_wakeup_ticks = ticks + sys_clock_tick_get_32();
|
|
} else {
|
|
expected_wakeup_ticks = Z_TICK_ABS(ticks);
|
|
}
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&sched_spinlock);
|
|
|
|
#if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC)
|
|
pending_current = _current;
|
|
#endif
|
|
unready_thread(_current);
|
|
z_add_thread_timeout(_current, timeout);
|
|
z_mark_thread_as_suspended(_current);
|
|
|
|
(void)z_swap(&sched_spinlock, key);
|
|
|
|
__ASSERT(!z_is_thread_state_set(_current, _THREAD_SUSPENDED), "");
|
|
|
|
ticks = (k_ticks_t)expected_wakeup_ticks - sys_clock_tick_get_32();
|
|
if (ticks > 0) {
|
|
return ticks;
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
int32_t z_impl_k_sleep(k_timeout_t timeout)
|
|
{
|
|
k_ticks_t ticks;
|
|
|
|
__ASSERT(!arch_is_in_isr(), "");
|
|
|
|
SYS_PORT_TRACING_FUNC_ENTER(k_thread, sleep, timeout);
|
|
|
|
/* in case of K_FOREVER, we suspend */
|
|
if (K_TIMEOUT_EQ(timeout, K_FOREVER)) {
|
|
k_thread_suspend(_current);
|
|
|
|
SYS_PORT_TRACING_FUNC_EXIT(k_thread, sleep, timeout, (int32_t) K_TICKS_FOREVER);
|
|
|
|
return (int32_t) K_TICKS_FOREVER;
|
|
}
|
|
|
|
ticks = timeout.ticks;
|
|
|
|
ticks = z_tick_sleep(ticks);
|
|
|
|
int32_t ret = k_ticks_to_ms_floor64(ticks);
|
|
|
|
SYS_PORT_TRACING_FUNC_EXIT(k_thread, sleep, timeout, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline int32_t z_vrfy_k_sleep(k_timeout_t timeout)
|
|
{
|
|
return z_impl_k_sleep(timeout);
|
|
}
|
|
#include <syscalls/k_sleep_mrsh.c>
|
|
#endif
|
|
|
|
int32_t z_impl_k_usleep(int us)
|
|
{
|
|
int32_t ticks;
|
|
|
|
SYS_PORT_TRACING_FUNC_ENTER(k_thread, usleep, us);
|
|
|
|
ticks = k_us_to_ticks_ceil64(us);
|
|
ticks = z_tick_sleep(ticks);
|
|
|
|
SYS_PORT_TRACING_FUNC_EXIT(k_thread, usleep, us, k_ticks_to_us_floor64(ticks));
|
|
|
|
return k_ticks_to_us_floor64(ticks);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline int32_t z_vrfy_k_usleep(int us)
|
|
{
|
|
return z_impl_k_usleep(us);
|
|
}
|
|
#include <syscalls/k_usleep_mrsh.c>
|
|
#endif
|
|
|
|
void z_impl_k_wakeup(k_tid_t thread)
|
|
{
|
|
SYS_PORT_TRACING_OBJ_FUNC(k_thread, wakeup, thread);
|
|
|
|
if (z_is_thread_pending(thread)) {
|
|
return;
|
|
}
|
|
|
|
if (z_abort_thread_timeout(thread) < 0) {
|
|
/* Might have just been sleeping forever */
|
|
if (thread->base.thread_state != _THREAD_SUSPENDED) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
z_mark_thread_as_not_suspended(thread);
|
|
z_ready_thread(thread);
|
|
|
|
flag_ipi();
|
|
|
|
if (!arch_is_in_isr()) {
|
|
z_reschedule_unlocked();
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_TRACE_SCHED_IPI
|
|
extern void z_trace_sched_ipi(void);
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
void z_sched_ipi(void)
|
|
{
|
|
/* NOTE: When adding code to this, make sure this is called
|
|
* at appropriate location when !CONFIG_SCHED_IPI_SUPPORTED.
|
|
*/
|
|
#ifdef CONFIG_TRACE_SCHED_IPI
|
|
z_trace_sched_ipi();
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline void z_vrfy_k_wakeup(k_tid_t thread)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
|
|
z_impl_k_wakeup(thread);
|
|
}
|
|
#include <syscalls/k_wakeup_mrsh.c>
|
|
#endif
|
|
|
|
k_tid_t z_impl_z_current_get(void)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
/* In SMP, _current is a field read from _current_cpu, which
|
|
* can race with preemption before it is read. We must lock
|
|
* local interrupts when reading it.
|
|
*/
|
|
unsigned int k = arch_irq_lock();
|
|
#endif
|
|
|
|
k_tid_t ret = _current_cpu->current;
|
|
|
|
#ifdef CONFIG_SMP
|
|
arch_irq_unlock(k);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline k_tid_t z_vrfy_z_current_get(void)
|
|
{
|
|
return z_impl_z_current_get();
|
|
}
|
|
#include <syscalls/z_current_get_mrsh.c>
|
|
#endif
|
|
|
|
int z_impl_k_is_preempt_thread(void)
|
|
{
|
|
return !arch_is_in_isr() && is_preempt(_current);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline int z_vrfy_k_is_preempt_thread(void)
|
|
{
|
|
return z_impl_k_is_preempt_thread();
|
|
}
|
|
#include <syscalls/k_is_preempt_thread_mrsh.c>
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHED_CPU_MASK
|
|
# ifdef CONFIG_SMP
|
|
/* Right now we use a single byte for this mask */
|
|
BUILD_ASSERT(CONFIG_MP_NUM_CPUS <= 8, "Too many CPUs for mask word");
|
|
# endif
|
|
|
|
|
|
static int cpu_mask_mod(k_tid_t thread, uint32_t enable_mask, uint32_t disable_mask)
|
|
{
|
|
int ret = 0;
|
|
|
|
#ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY
|
|
__ASSERT(z_is_thread_prevented_from_running(thread),
|
|
"Running threads cannot change CPU pin");
|
|
#endif
|
|
|
|
LOCKED(&sched_spinlock) {
|
|
if (z_is_thread_prevented_from_running(thread)) {
|
|
thread->base.cpu_mask |= enable_mask;
|
|
thread->base.cpu_mask &= ~disable_mask;
|
|
} else {
|
|
ret = -EINVAL;
|
|
}
|
|
}
|
|
|
|
#if defined(CONFIG_ASSERT) && defined(CONFIG_SCHED_CPU_MASK_PIN_ONLY)
|
|
int m = thread->base.cpu_mask;
|
|
|
|
__ASSERT((m == 0) || ((m & (m - 1)) == 0),
|
|
"Only one CPU allowed in mask when PIN_ONLY");
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
int k_thread_cpu_mask_clear(k_tid_t thread)
|
|
{
|
|
return cpu_mask_mod(thread, 0, 0xffffffff);
|
|
}
|
|
|
|
int k_thread_cpu_mask_enable_all(k_tid_t thread)
|
|
{
|
|
return cpu_mask_mod(thread, 0xffffffff, 0);
|
|
}
|
|
|
|
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
|
|
{
|
|
return cpu_mask_mod(thread, BIT(cpu), 0);
|
|
}
|
|
|
|
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
|
|
{
|
|
return cpu_mask_mod(thread, 0, BIT(cpu));
|
|
}
|
|
|
|
int k_thread_cpu_pin(k_tid_t thread, int cpu)
|
|
{
|
|
int ret;
|
|
|
|
ret = k_thread_cpu_mask_clear(thread);
|
|
if (ret == 0) {
|
|
return k_thread_cpu_mask_enable(thread, cpu);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#endif /* CONFIG_SCHED_CPU_MASK */
|
|
|
|
static inline void unpend_all(_wait_q_t *wait_q)
|
|
{
|
|
struct k_thread *thread;
|
|
|
|
while ((thread = z_waitq_head(wait_q)) != NULL) {
|
|
unpend_thread_no_timeout(thread);
|
|
(void)z_abort_thread_timeout(thread);
|
|
arch_thread_return_value_set(thread, 0);
|
|
ready_thread(thread);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_CMSIS_RTOS_V1
|
|
extern void z_thread_cmsis_status_mask_clear(struct k_thread *thread);
|
|
#endif
|
|
|
|
static void end_thread(struct k_thread *thread)
|
|
{
|
|
/* We hold the lock, and the thread is known not to be running
|
|
* anywhere.
|
|
*/
|
|
if ((thread->base.thread_state & _THREAD_DEAD) == 0U) {
|
|
thread->base.thread_state |= _THREAD_DEAD;
|
|
thread->base.thread_state &= ~_THREAD_ABORTING;
|
|
if (z_is_thread_queued(thread)) {
|
|
dequeue_thread(thread);
|
|
}
|
|
if (thread->base.pended_on != NULL) {
|
|
unpend_thread_no_timeout(thread);
|
|
}
|
|
(void)z_abort_thread_timeout(thread);
|
|
unpend_all(&thread->join_queue);
|
|
update_cache(1);
|
|
|
|
SYS_PORT_TRACING_FUNC(k_thread, sched_abort, thread);
|
|
|
|
z_thread_monitor_exit(thread);
|
|
|
|
#ifdef CONFIG_CMSIS_RTOS_V1
|
|
z_thread_cmsis_status_mask_clear(thread);
|
|
#endif
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
z_mem_domain_exit_thread(thread);
|
|
z_thread_perms_all_clear(thread);
|
|
z_object_uninit(thread->stack_obj);
|
|
z_object_uninit(thread);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void z_thread_abort(struct k_thread *thread)
|
|
{
|
|
k_spinlock_key_t key = k_spin_lock(&sched_spinlock);
|
|
|
|
if ((thread->base.user_options & K_ESSENTIAL) != 0) {
|
|
k_spin_unlock(&sched_spinlock, key);
|
|
__ASSERT(false, "aborting essential thread %p", thread);
|
|
k_panic();
|
|
return;
|
|
}
|
|
|
|
if ((thread->base.thread_state & _THREAD_DEAD) != 0U) {
|
|
k_spin_unlock(&sched_spinlock, key);
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (is_aborting(thread) && thread == _current && arch_is_in_isr()) {
|
|
/* Another CPU is spinning for us, don't deadlock */
|
|
end_thread(thread);
|
|
}
|
|
|
|
bool active = thread_active_elsewhere(thread);
|
|
|
|
if (active) {
|
|
/* It's running somewhere else, flag and poke */
|
|
thread->base.thread_state |= _THREAD_ABORTING;
|
|
|
|
/* We're going to spin, so need a true synchronous IPI
|
|
* here, not deferred!
|
|
*/
|
|
#ifdef CONFIG_SCHED_IPI_SUPPORTED
|
|
arch_sched_ipi();
|
|
#endif
|
|
}
|
|
|
|
if (is_aborting(thread) && thread != _current) {
|
|
if (arch_is_in_isr()) {
|
|
/* ISRs can only spin waiting another CPU */
|
|
k_spin_unlock(&sched_spinlock, key);
|
|
while (is_aborting(thread)) {
|
|
}
|
|
} else if (active) {
|
|
/* Threads can join */
|
|
add_to_waitq_locked(_current, &thread->join_queue);
|
|
z_swap(&sched_spinlock, key);
|
|
}
|
|
return; /* lock has been released */
|
|
}
|
|
#endif
|
|
end_thread(thread);
|
|
if (thread == _current && !arch_is_in_isr()) {
|
|
z_swap(&sched_spinlock, key);
|
|
__ASSERT(false, "aborted _current back from dead");
|
|
}
|
|
k_spin_unlock(&sched_spinlock, key);
|
|
}
|
|
|
|
#if !defined(CONFIG_ARCH_HAS_THREAD_ABORT)
|
|
void z_impl_k_thread_abort(struct k_thread *thread)
|
|
{
|
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, abort, thread);
|
|
|
|
z_thread_abort(thread);
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, abort, thread);
|
|
}
|
|
#endif
|
|
|
|
int z_impl_k_thread_join(struct k_thread *thread, k_timeout_t timeout)
|
|
{
|
|
k_spinlock_key_t key = k_spin_lock(&sched_spinlock);
|
|
int ret = 0;
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, join, thread, timeout);
|
|
|
|
if ((thread->base.thread_state & _THREAD_DEAD) != 0U) {
|
|
ret = 0;
|
|
} else if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
|
|
ret = -EBUSY;
|
|
} else if ((thread == _current) ||
|
|
(thread->base.pended_on == &_current->join_queue)) {
|
|
ret = -EDEADLK;
|
|
} else {
|
|
__ASSERT(!arch_is_in_isr(), "cannot join in ISR");
|
|
add_to_waitq_locked(_current, &thread->join_queue);
|
|
add_thread_timeout(_current, timeout);
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_thread, join, thread, timeout);
|
|
ret = z_swap(&sched_spinlock, key);
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, join, thread, timeout, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, join, thread, timeout, ret);
|
|
|
|
k_spin_unlock(&sched_spinlock, key);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
/* Special case: don't oops if the thread is uninitialized. This is because
|
|
* the initialization bit does double-duty for thread objects; if false, means
|
|
* the thread object is truly uninitialized, or the thread ran and exited for
|
|
* some reason.
|
|
*
|
|
* Return true in this case indicating we should just do nothing and return
|
|
* success to the caller.
|
|
*/
|
|
static bool thread_obj_validate(struct k_thread *thread)
|
|
{
|
|
struct z_object *ko = z_object_find(thread);
|
|
int ret = z_object_validate(ko, K_OBJ_THREAD, _OBJ_INIT_TRUE);
|
|
|
|
switch (ret) {
|
|
case 0:
|
|
return false;
|
|
case -EINVAL:
|
|
return true;
|
|
default:
|
|
#ifdef CONFIG_LOG
|
|
z_dump_object_error(ret, thread, ko, K_OBJ_THREAD);
|
|
#endif
|
|
Z_OOPS(Z_SYSCALL_VERIFY_MSG(ret, "access denied"));
|
|
}
|
|
CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
|
|
}
|
|
|
|
static inline int z_vrfy_k_thread_join(struct k_thread *thread,
|
|
k_timeout_t timeout)
|
|
{
|
|
if (thread_obj_validate(thread)) {
|
|
return 0;
|
|
}
|
|
|
|
return z_impl_k_thread_join(thread, timeout);
|
|
}
|
|
#include <syscalls/k_thread_join_mrsh.c>
|
|
|
|
static inline void z_vrfy_k_thread_abort(k_tid_t thread)
|
|
{
|
|
if (thread_obj_validate(thread)) {
|
|
return;
|
|
}
|
|
|
|
Z_OOPS(Z_SYSCALL_VERIFY_MSG(!(thread->base.user_options & K_ESSENTIAL),
|
|
"aborting essential thread %p", thread));
|
|
|
|
z_impl_k_thread_abort((struct k_thread *)thread);
|
|
}
|
|
#include <syscalls/k_thread_abort_mrsh.c>
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
/*
|
|
* future scheduler.h API implementations
|
|
*/
|
|
bool z_sched_wake(_wait_q_t *wait_q, int swap_retval, void *swap_data)
|
|
{
|
|
struct k_thread *thread;
|
|
bool ret = false;
|
|
|
|
LOCKED(&sched_spinlock) {
|
|
thread = _priq_wait_best(&wait_q->waitq);
|
|
|
|
if (thread != NULL) {
|
|
z_thread_return_value_set_with_data(thread,
|
|
swap_retval,
|
|
swap_data);
|
|
unpend_thread_no_timeout(thread);
|
|
(void)z_abort_thread_timeout(thread);
|
|
ready_thread(thread);
|
|
ret = true;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int z_sched_wait(struct k_spinlock *lock, k_spinlock_key_t key,
|
|
_wait_q_t *wait_q, k_timeout_t timeout, void **data)
|
|
{
|
|
int ret = z_pend_curr(lock, key, wait_q, timeout);
|
|
|
|
if (data != NULL) {
|
|
*data = _current->base.swap_data;
|
|
}
|
|
return ret;
|
|
}
|