321 lines
6.9 KiB
C
321 lines
6.9 KiB
C
/*
|
|
* Copyright (c) 2018 Intel Corporation
|
|
* Copyright (c) 2018 Friedt Professional Engineering Services, Inc
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include "posix_clock.h"
|
|
|
|
#include <zephyr/kernel.h>
|
|
#include <errno.h>
|
|
#include <zephyr/posix/time.h>
|
|
#include <zephyr/posix/sys/time.h>
|
|
#include <zephyr/posix/unistd.h>
|
|
#include <zephyr/internal/syscall_handler.h>
|
|
#include <zephyr/spinlock.h>
|
|
|
|
/*
|
|
* `k_uptime_get` returns a timestamp based on an always increasing
|
|
* value from the system start. To support the `CLOCK_REALTIME`
|
|
* clock, this `rt_clock_base` records the time that the system was
|
|
* started. This can either be set via 'clock_settime', or could be
|
|
* set from a real time clock, if such hardware is present.
|
|
*/
|
|
static struct timespec rt_clock_base;
|
|
static struct k_spinlock rt_clock_base_lock;
|
|
|
|
/**
|
|
* @brief Get clock time specified by clock_id.
|
|
*
|
|
* See IEEE 1003.1
|
|
*/
|
|
int z_impl___posix_clock_get_base(clockid_t clock_id, struct timespec *base)
|
|
{
|
|
switch (clock_id) {
|
|
case CLOCK_MONOTONIC:
|
|
base->tv_sec = 0;
|
|
base->tv_nsec = 0;
|
|
break;
|
|
|
|
case CLOCK_REALTIME:
|
|
K_SPINLOCK(&rt_clock_base_lock) {
|
|
*base = rt_clock_base;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
int z_vrfy___posix_clock_get_base(clockid_t clock_id, struct timespec *ts)
|
|
{
|
|
K_OOPS(K_SYSCALL_MEMORY_WRITE(ts, sizeof(*ts)));
|
|
return z_impl___posix_clock_get_base(clock_id, ts);
|
|
}
|
|
#include <zephyr/syscalls/__posix_clock_get_base_mrsh.c>
|
|
#endif
|
|
|
|
int clock_gettime(clockid_t clock_id, struct timespec *ts)
|
|
{
|
|
struct timespec base;
|
|
|
|
switch (clock_id) {
|
|
case CLOCK_MONOTONIC:
|
|
base.tv_sec = 0;
|
|
base.tv_nsec = 0;
|
|
break;
|
|
|
|
case CLOCK_REALTIME:
|
|
(void)__posix_clock_get_base(clock_id, &base);
|
|
break;
|
|
|
|
default:
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
uint64_t ticks = k_uptime_ticks();
|
|
uint64_t elapsed_secs = ticks / CONFIG_SYS_CLOCK_TICKS_PER_SEC;
|
|
uint64_t nremainder = ticks - elapsed_secs * CONFIG_SYS_CLOCK_TICKS_PER_SEC;
|
|
|
|
ts->tv_sec = (time_t) elapsed_secs;
|
|
/* For ns 32 bit conversion can be used since its smaller than 1sec. */
|
|
ts->tv_nsec = (int32_t) k_ticks_to_ns_floor32(nremainder);
|
|
|
|
ts->tv_sec += base.tv_sec;
|
|
ts->tv_nsec += base.tv_nsec;
|
|
if (ts->tv_nsec >= NSEC_PER_SEC) {
|
|
ts->tv_sec++;
|
|
ts->tv_nsec -= NSEC_PER_SEC;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int clock_getres(clockid_t clock_id, struct timespec *res)
|
|
{
|
|
BUILD_ASSERT(CONFIG_SYS_CLOCK_TICKS_PER_SEC > 0 &&
|
|
CONFIG_SYS_CLOCK_TICKS_PER_SEC <= NSEC_PER_SEC,
|
|
"CONFIG_SYS_CLOCK_TICKS_PER_SEC must be > 0 and <= NSEC_PER_SEC");
|
|
|
|
if (!(clock_id == CLOCK_MONOTONIC || clock_id == CLOCK_REALTIME ||
|
|
clock_id == CLOCK_PROCESS_CPUTIME_ID)) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
if (res != NULL) {
|
|
*res = (struct timespec){
|
|
.tv_sec = 0,
|
|
.tv_nsec = NSEC_PER_SEC / CONFIG_SYS_CLOCK_TICKS_PER_SEC,
|
|
};
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Set the time of the specified clock.
|
|
*
|
|
* See IEEE 1003.1.
|
|
*
|
|
* Note that only the `CLOCK_REALTIME` clock can be set using this
|
|
* call.
|
|
*/
|
|
int clock_settime(clockid_t clock_id, const struct timespec *tp)
|
|
{
|
|
struct timespec base;
|
|
k_spinlock_key_t key;
|
|
|
|
if (clock_id != CLOCK_REALTIME) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
if (tp->tv_nsec < 0 || tp->tv_nsec >= NSEC_PER_SEC) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
uint64_t elapsed_nsecs = k_ticks_to_ns_floor64(k_uptime_ticks());
|
|
int64_t delta = (int64_t)NSEC_PER_SEC * tp->tv_sec + tp->tv_nsec
|
|
- elapsed_nsecs;
|
|
|
|
base.tv_sec = delta / NSEC_PER_SEC;
|
|
base.tv_nsec = delta % NSEC_PER_SEC;
|
|
|
|
key = k_spin_lock(&rt_clock_base_lock);
|
|
rt_clock_base = base;
|
|
k_spin_unlock(&rt_clock_base_lock, key);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Note: usleep() was removed in Issue 7.
|
|
*
|
|
* It is kept here for compatibility purposes.
|
|
*
|
|
* For more information, please see
|
|
* https://pubs.opengroup.org/onlinepubs/9699919799/xrat/V4_xsh_chap01.html
|
|
* https://pubs.opengroup.org/onlinepubs/9699919799/xrat/V4_xsh_chap03.html
|
|
*/
|
|
int usleep(useconds_t useconds)
|
|
{
|
|
int32_t rem;
|
|
|
|
if (useconds >= USEC_PER_SEC) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
rem = k_usleep(useconds);
|
|
__ASSERT_NO_MSG(rem >= 0);
|
|
if (rem > 0) {
|
|
/* sleep was interrupted by a call to k_wakeup() */
|
|
errno = EINTR;
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Suspend execution for a nanosecond interval, or
|
|
* until some absolute time relative to the specified clock.
|
|
*
|
|
* See IEEE 1003.1
|
|
*/
|
|
static int __z_clock_nanosleep(clockid_t clock_id, int flags, const struct timespec *rqtp,
|
|
struct timespec *rmtp)
|
|
{
|
|
uint64_t ns;
|
|
uint64_t us;
|
|
uint64_t uptime_ns;
|
|
k_spinlock_key_t key;
|
|
const bool update_rmtp = rmtp != NULL;
|
|
|
|
if (!((clock_id == CLOCK_REALTIME) || (clock_id == CLOCK_MONOTONIC))) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
if (rqtp == NULL) {
|
|
errno = EFAULT;
|
|
return -1;
|
|
}
|
|
|
|
if ((rqtp->tv_sec < 0) || (rqtp->tv_nsec < 0) || (rqtp->tv_nsec >= NSEC_PER_SEC)) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
if ((flags & TIMER_ABSTIME) == 0 &&
|
|
unlikely(rqtp->tv_sec >= ULLONG_MAX / NSEC_PER_SEC)) {
|
|
|
|
ns = rqtp->tv_nsec + NSEC_PER_SEC
|
|
+ k_sleep(K_SECONDS(rqtp->tv_sec - 1)) * NSEC_PER_MSEC;
|
|
} else {
|
|
ns = rqtp->tv_sec * NSEC_PER_SEC + rqtp->tv_nsec;
|
|
}
|
|
|
|
uptime_ns = k_ticks_to_ns_ceil64(sys_clock_tick_get());
|
|
|
|
if (flags & TIMER_ABSTIME && clock_id == CLOCK_REALTIME) {
|
|
key = k_spin_lock(&rt_clock_base_lock);
|
|
ns -= rt_clock_base.tv_sec * NSEC_PER_SEC + rt_clock_base.tv_nsec;
|
|
k_spin_unlock(&rt_clock_base_lock, key);
|
|
}
|
|
|
|
if ((flags & TIMER_ABSTIME) == 0) {
|
|
ns += uptime_ns;
|
|
}
|
|
|
|
if (ns <= uptime_ns) {
|
|
goto do_rmtp_update;
|
|
}
|
|
|
|
us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
|
|
do {
|
|
us = k_sleep(K_TIMEOUT_ABS_US(us)) * 1000;
|
|
} while (us != 0);
|
|
|
|
do_rmtp_update:
|
|
if (update_rmtp) {
|
|
rmtp->tv_sec = 0;
|
|
rmtp->tv_nsec = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int nanosleep(const struct timespec *rqtp, struct timespec *rmtp)
|
|
{
|
|
return __z_clock_nanosleep(CLOCK_MONOTONIC, 0, rqtp, rmtp);
|
|
}
|
|
|
|
int clock_nanosleep(clockid_t clock_id, int flags, const struct timespec *rqtp,
|
|
struct timespec *rmtp)
|
|
{
|
|
return __z_clock_nanosleep(clock_id, flags, rqtp, rmtp);
|
|
}
|
|
|
|
/**
|
|
* @brief Get current real time.
|
|
*
|
|
* See IEEE 1003.1
|
|
*/
|
|
int gettimeofday(struct timeval *tv, void *tz)
|
|
{
|
|
struct timespec ts;
|
|
int res;
|
|
|
|
/* As per POSIX, "if tzp is not a null pointer, the behavior
|
|
* is unspecified." "tzp" is the "tz" parameter above. */
|
|
ARG_UNUSED(tz);
|
|
|
|
res = clock_gettime(CLOCK_REALTIME, &ts);
|
|
tv->tv_sec = ts.tv_sec;
|
|
tv->tv_usec = ts.tv_nsec / NSEC_PER_USEC;
|
|
|
|
return res;
|
|
}
|
|
|
|
int clock_getcpuclockid(pid_t pid, clockid_t *clock_id)
|
|
{
|
|
/* We don't allow any process ID but our own. */
|
|
if (pid != 0 && pid != getpid()) {
|
|
return EPERM;
|
|
}
|
|
|
|
*clock_id = CLOCK_PROCESS_CPUTIME_ID;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_ZTEST
|
|
#include <zephyr/ztest.h>
|
|
static void reset_clock_base(void)
|
|
{
|
|
K_SPINLOCK(&rt_clock_base_lock) {
|
|
rt_clock_base = (struct timespec){0};
|
|
}
|
|
}
|
|
|
|
static void clock_base_reset_rule_after(const struct ztest_unit_test *test, void *data)
|
|
{
|
|
ARG_UNUSED(test);
|
|
ARG_UNUSED(data);
|
|
|
|
reset_clock_base();
|
|
}
|
|
|
|
ZTEST_RULE(clock_base_reset_rule, NULL, clock_base_reset_rule_after);
|
|
#endif /* CONFIG_ZTEST */
|