zephyr/drivers/timer/cc13x2_cc26x2_rtc_timer.c

254 lines
5.8 KiB
C

/*
* Copyright (c) 2019, Texas Instruments Incorporated
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT ti_cc13xx_cc26xx_rtc
/*
* TI SimpleLink CC13X2/CC26X2 RTC-based system timer
*
* This system timer implementation supports both tickless and ticking modes.
* RTC counts continually in 64-bit mode and timeouts are
* scheduled using the RTC comparator. An interrupt is triggered whenever
* the comparator value set is reached.
*/
#include <zephyr/device.h>
#include <soc.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/sys_clock.h>
#include <driverlib/interrupt.h>
#include <driverlib/aon_rtc.h>
#include <driverlib/aon_event.h>
#define RTC_COUNTS_PER_SEC 0x100000000ULL
/* Number of counts per rtc timer cycle */
#define RTC_COUNTS_PER_CYCLE (RTC_COUNTS_PER_SEC / \
sys_clock_hw_cycles_per_sec())
/* Number of counts per system clock tick */
#define RTC_COUNTS_PER_TICK (RTC_COUNTS_PER_SEC / \
CONFIG_SYS_CLOCK_TICKS_PER_SEC)
/* Number of RTC cycles per system clock tick */
#define CYCLES_PER_TICK (sys_clock_hw_cycles_per_sec() / \
CONFIG_SYS_CLOCK_TICKS_PER_SEC)
/*
* Maximum number of ticks.
*/
#define MAX_CYC 0x7FFFFFFFFFFFULL
#define MAX_TICKS (MAX_CYC / RTC_COUNTS_PER_TICK)
/*
* Due to the nature of clock synchronization, the comparator cannot be set
* to a value that is too close to the current time. This constant defines
* a safe threshold for the comparator.
*/
#define COMPARE_MARGIN 6
/* RTC count of the last announce call, rounded down to tick boundary. */
static volatile uint64_t rtc_last;
#ifdef CONFIG_TICKLESS_KERNEL
static struct k_spinlock lock;
#else
static uint64_t nextThreshold = RTC_COUNTS_PER_TICK;
#endif /* CONFIG_TICKLESS_KERNEL */
static void setThreshold(uint32_t next)
{
uint32_t now;
unsigned int key;
key = irq_lock();
/* get the current RTC count corresponding to compare window */
now = AONRTCCurrentCompareValueGet();
/* if next is too soon, set at least one RTC tick in future */
/* assume next never be more than half the maximum 32 bit count value */
if ((next - now) > (uint32_t)0x80000000) {
/* now is past next */
next = now + COMPARE_MARGIN;
} else if ((now + COMPARE_MARGIN - next) < (uint32_t)0x80000000) {
if (next < now + COMPARE_MARGIN) {
next = now + COMPARE_MARGIN;
}
}
/* set next compare threshold in RTC */
AONRTCCompareValueSet(AON_RTC_CH0, next);
irq_unlock(key);
}
void rtc_isr(const void *arg)
{
#ifndef CONFIG_TICKLESS_KERNEL
uint64_t newThreshold;
uint32_t next;
#else
uint64_t ticks, currCount;
#endif
ARG_UNUSED(arg);
AONRTCEventClear(AON_RTC_CH0);
#ifdef CONFIG_TICKLESS_KERNEL
k_spinlock_key_t key = k_spin_lock(&lock);
currCount = (uint64_t)AONRTCCurrent64BitValueGet();
ticks = (currCount - rtc_last) / RTC_COUNTS_PER_TICK;
rtc_last += ticks * RTC_COUNTS_PER_TICK;
k_spin_unlock(&lock, key);
sys_clock_announce(ticks);
#else /* !CONFIG_TICKLESS_KERNEL */
/* calculate new 64-bit RTC count for next interrupt */
newThreshold = nextThreshold + RTC_COUNTS_PER_TICK;
next = (uint32_t)((uint64_t)newThreshold >> 16);
setThreshold(next);
nextThreshold = newThreshold;
rtc_last += RTC_COUNTS_PER_TICK;
sys_clock_announce(1);
#endif /* CONFIG_TICKLESS_KERNEL */
}
static void initDevice(void)
{
AONRTCDisable();
AONRTCReset();
HWREG(AON_RTC_BASE + AON_RTC_O_SYNC) = 1;
/* read sync register to complete reset */
HWREG(AON_RTC_BASE + AON_RTC_O_SYNC);
AONRTCEventClear(AON_RTC_CH0);
IntPendClear(INT_AON_RTC_COMB);
HWREG(AON_RTC_BASE + AON_RTC_O_SYNC);
}
static void startDevice(void)
{
uint32_t compare;
uint64_t period;
unsigned int key;
key = irq_lock();
/* reset timer */
AONRTCReset();
AONRTCEventClear(AON_RTC_CH0);
IntPendClear(INT_AON_RTC_COMB);
/*
* set the compare register to one period.
* For a very small period round up to interrupt upon 4th tick in
* compare register
*/
period = RTC_COUNTS_PER_TICK;
if (period < 0x40000) {
compare = 0x4; /* 4 * 15.5us ~= 62us */
} else {
/* else, interrupt on first period expiration */
compare = period >> 16;
}
/* set the compare value at the RTC */
AONRTCCompareValueSet(AON_RTC_CH0, compare);
/* enable compare channel 0 */
AONEventMcuWakeUpSet(AON_EVENT_MCU_WU0, AON_EVENT_RTC0);
AONRTCChannelEnable(AON_RTC_CH0);
AONRTCCombinedEventConfig(AON_RTC_CH0);
/* start timer */
AONRTCEnable();
irq_unlock(key);
}
void sys_clock_set_timeout(int32_t ticks, bool idle)
{
ARG_UNUSED(idle);
#ifdef CONFIG_TICKLESS_KERNEL
ticks = (ticks == K_TICKS_FOREVER) ? MAX_TICKS : ticks;
ticks = CLAMP(ticks - 1, 0, (int32_t) MAX_TICKS);
k_spinlock_key_t key = k_spin_lock(&lock);
/* Compute number of RTC cycles until the next timeout. */
uint64_t count = AONRTCCurrent64BitValueGet();
uint64_t timeout = ticks * RTC_COUNTS_PER_TICK +
(count - rtc_last);
/* Round to the nearest tick boundary. */
timeout = (timeout + RTC_COUNTS_PER_TICK - 1) / RTC_COUNTS_PER_TICK
* RTC_COUNTS_PER_TICK;
timeout = MIN(timeout, MAX_CYC);
timeout += rtc_last;
/* Set the comparator */
setThreshold(timeout >> 16);
k_spin_unlock(&lock, key);
#endif /* CONFIG_TICKLESS_KERNEL */
}
uint32_t sys_clock_elapsed(void)
{
uint32_t ret = (AONRTCCurrent64BitValueGet() - rtc_last) /
RTC_COUNTS_PER_TICK;
return ret;
}
uint32_t sys_clock_cycle_get_32(void)
{
return (uint32_t)(AONRTCCurrent64BitValueGet() / RTC_COUNTS_PER_CYCLE);
}
uint64_t sys_clock_cycle_get_64(void)
{
return AONRTCCurrent64BitValueGet() / RTC_COUNTS_PER_CYCLE;
}
static int sys_clock_driver_init(const struct device *dev)
{
ARG_UNUSED(dev);
rtc_last = 0U;
initDevice();
startDevice();
/* Enable RTC interrupt. */
IRQ_CONNECT(DT_INST_IRQN(0),
DT_INST_IRQ(0, priority),
rtc_isr, 0, 0);
irq_enable(DT_INST_IRQN(0));
return 0;
}
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);