zephyr/soc/nxp/imx/imx8m/m4_mini/soc.c

183 lines
5.6 KiB
C

/*
* Copyright (c) 2020, Manivannan Sadhasivam <mani@kernel.org>
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/device.h>
#include <fsl_clock.h>
#include <fsl_common.h>
#include <fsl_rdc.h>
#include <zephyr/init.h>
#include <zephyr/kernel.h>
#include <soc.h>
#include <zephyr/dt-bindings/rdc/imx_rdc.h>
/* OSC/PLL is already initialized by ROM and Cortex-A53 (u-boot) */
static void SOC_RdcInit(void)
{
/* Move M4 core to specific RDC domain 1 */
rdc_domain_assignment_t assignment = {0};
assignment.domainId = M4_DOMAIN_ID;
RDC_SetMasterDomainAssignment(RDC, kRDC_Master_M4, &assignment);
/*
* The M4 core is running at domain 1, enable clock gate for
* Iomux to run at domain 1.
*/
CLOCK_EnableClock(kCLOCK_Iomux);
CLOCK_EnableClock(kCLOCK_Ipmux1);
CLOCK_EnableClock(kCLOCK_Ipmux2);
CLOCK_EnableClock(kCLOCK_Ipmux3);
CLOCK_EnableClock(kCLOCK_Ipmux4);
CLOCK_EnableClock(kCLOCK_Qspi);
/*
* The M4 core is running at domain 1, enable the PLL clock sources
* to domain 1.
*/
/* Enable SysPLL1 to Domain 1 */
CLOCK_ControlGate(kCLOCK_SysPll1Gate, kCLOCK_ClockNeededAll);
/* Enable SysPLL2 to Domain 1 */
CLOCK_ControlGate(kCLOCK_SysPll2Gate, kCLOCK_ClockNeededAll);
/* Enable SysPLL3 to Domain 1 */
CLOCK_ControlGate(kCLOCK_SysPll3Gate, kCLOCK_ClockNeededAll);
/* Enable AudioPLL1 to Domain 1 */
CLOCK_ControlGate(kCLOCK_AudioPll1Gate, kCLOCK_ClockNeededAll);
/* Enable AudioPLL2 to Domain 1 */
CLOCK_ControlGate(kCLOCK_AudioPll2Gate, kCLOCK_ClockNeededAll);
/* Enable VideoPLL1 to Domain 1 */
CLOCK_ControlGate(kCLOCK_VideoPll1Gate, kCLOCK_ClockNeededAll);
}
/* AUDIO PLL1 configuration */
static const ccm_analog_frac_pll_config_t g_audioPll1Config = {
.refSel = kANALOG_PllRefOsc24M, /* PLL reference OSC24M */
.mainDiv = 655U,
.dsm = 23593U,
.preDiv = 5U,
.postDiv = 2U, /* AUDIO PLL1 frequency = 786432000HZ */
};
/* AUDIO PLL2 configuration */
static const ccm_analog_frac_pll_config_t g_audioPll2Config = {
.refSel = kANALOG_PllRefOsc24M, /* PLL reference OSC24M */
.mainDiv = 301U,
.dsm = 3670U,
.preDiv = 5U,
.postDiv = 1U, /* AUDIO PLL2 frequency = 722534399HZ */
};
static void SOC_ClockInit(void)
{
/*
* Switch AHB NOC root to 24M first in order to configure
* the SYSTEM PLL1
*/
CLOCK_SetRootMux(kCLOCK_RootAhb, kCLOCK_AhbRootmuxOsc24M);
/*
* Switch AXI M4 root to 24M first in order to configure
* the SYSTEM PLL2
*/
CLOCK_SetRootMux(kCLOCK_RootM4, kCLOCK_M4RootmuxOsc24M);
/* Init AUDIO PLL1 to run at 786432000HZ */
CLOCK_InitAudioPll1(&g_audioPll1Config);
/* Init AUDIO PLL2 to run at 722534399HZ */
CLOCK_InitAudioPll2(&g_audioPll2Config);
CLOCK_SetRootDivider(kCLOCK_RootM4, 1U, 2U);
/* Switch cortex-m4 to SYSTEM PLL1 */
CLOCK_SetRootMux(kCLOCK_RootM4, kCLOCK_M4RootmuxSysPll1);
CLOCK_SetRootDivider(kCLOCK_RootAhb, 1U, 1U);
/* Switch AHB to SYSTEM PLL1 DIV6 = 133MHZ */
CLOCK_SetRootMux(kCLOCK_RootAhb, kCLOCK_AhbRootmuxSysPll1Div6);
/* Set root clock to 800MHZ/ 2= 400MHZ */
CLOCK_SetRootDivider(kCLOCK_RootAudioAhb, 1U, 2U);
/* switch AUDIO AHB to SYSTEM PLL1 */
CLOCK_SetRootMux(kCLOCK_RootAudioAhb, kCLOCK_AudioAhbRootmuxSysPll1);
#if defined(CONFIG_UART_MCUX_IUART)
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(uart1))
/* Set UART source to SysPLL1 Div10 80MHZ */
CLOCK_SetRootMux(kCLOCK_RootUart1, kCLOCK_UartRootmuxSysPll1Div10);
/* Set root clock to 80MHZ/ 1= 80MHZ */
CLOCK_SetRootDivider(kCLOCK_RootUart1, 1U, 1U);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(uart2))
/* Set UART source to SysPLL1 Div10 80MHZ */
CLOCK_SetRootMux(kCLOCK_RootUart2, kCLOCK_UartRootmuxSysPll1Div10);
/* Set root clock to 80MHZ/ 1= 80MHZ */
CLOCK_SetRootDivider(kCLOCK_RootUart2, 1U, 1U);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(uart3))
/* Set UART source to SysPLL1 Div10 80MHZ */
CLOCK_SetRootMux(kCLOCK_RootUart3, kCLOCK_UartRootmuxSysPll1Div10);
/* Set root clock to 80MHZ/ 1= 80MHZ */
CLOCK_SetRootDivider(kCLOCK_RootUart3, 1U, 1U);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(uart4))
/* Set UART source to SysPLL1 Div10 80MHZ */
CLOCK_SetRootMux(kCLOCK_RootUart4, kCLOCK_UartRootmuxSysPll1Div10);
/* Set root clock to 80MHZ/ 1= 80MHZ */
CLOCK_SetRootDivider(kCLOCK_RootUart4, 1U, 1U);
#endif
#endif
#if defined(CONFIG_SPI_MCUX_ECSPI)
#if DT_NODE_HAS_STATUS(DT_NODELABEL(ecspi1), okay)
/* Set ECSPI1 source to SYSTEM PLL1 800MHZ */
CLOCK_SetRootMux(kCLOCK_RootEcspi1, kCLOCK_EcspiRootmuxSysPll1);
/* Set root clock to 800MHZ / 10 = 80MHZ */
CLOCK_SetRootDivider(kCLOCK_RootEcspi1, 2U, 5U);
#endif
#if DT_NODE_HAS_STATUS(DT_NODELABEL(ecspi2), okay)
/* Set ECSPI2 source to SYSTEM PLL1 800MHZ */
CLOCK_SetRootMux(kCLOCK_RootEcspi2, kCLOCK_EcspiRootmuxSysPll1);
/* Set root clock to 800MHZ / 10 = 80MHZ */
CLOCK_SetRootDivider(kCLOCK_RootEcspi2, 2U, 5U);
#endif
#if DT_NODE_HAS_STATUS(DT_NODELABEL(ecspi3), okay)
/* Set ECSPI3 source to SYSTEM PLL1 800MHZ */
CLOCK_SetRootMux(kCLOCK_RootEcspi3, kCLOCK_EcspiRootmuxSysPll1);
/* Set root clock to 800MHZ / 10 = 80MHZ */
CLOCK_SetRootDivider(kCLOCK_RootEcspi3, 2U, 5U);
#endif
#endif
/* Enable RDC clock */
CLOCK_EnableClock(kCLOCK_Rdc);
/*
* The purpose to enable the following modules clock is to make
* sure the M4 core could work normally when A53 core
* enters the low power state
*/
CLOCK_EnableClock(kCLOCK_Sim_display);
CLOCK_EnableClock(kCLOCK_Sim_m);
CLOCK_EnableClock(kCLOCK_Sim_main);
CLOCK_EnableClock(kCLOCK_Sim_s);
CLOCK_EnableClock(kCLOCK_Sim_wakeup);
CLOCK_EnableClock(kCLOCK_Debug);
CLOCK_EnableClock(kCLOCK_Dram);
CLOCK_EnableClock(kCLOCK_Sec_Debug);
}
void soc_early_init_hook(void)
{
/* SoC specific RDC settings */
SOC_RdcInit();
/* SoC specific Clock settings */
SOC_ClockInit();
}