zephyr/kernel/timeout.c

341 lines
7.2 KiB
C

/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <zephyr/spinlock.h>
#include <ksched.h>
#include <timeout_q.h>
#include <zephyr/internal/syscall_handler.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/sys_clock.h>
static uint64_t curr_tick;
static sys_dlist_t timeout_list = SYS_DLIST_STATIC_INIT(&timeout_list);
static struct k_spinlock timeout_lock;
#define MAX_WAIT (IS_ENABLED(CONFIG_SYSTEM_CLOCK_SLOPPY_IDLE) \
? K_TICKS_FOREVER : INT_MAX)
/* Ticks left to process in the currently-executing sys_clock_announce() */
static int announce_remaining;
#if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME)
int z_clock_hw_cycles_per_sec = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_sys_clock_hw_cycles_per_sec_runtime_get(void)
{
return z_impl_sys_clock_hw_cycles_per_sec_runtime_get();
}
#include <syscalls/sys_clock_hw_cycles_per_sec_runtime_get_mrsh.c>
#endif /* CONFIG_USERSPACE */
#endif /* CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME */
static struct _timeout *first(void)
{
sys_dnode_t *t = sys_dlist_peek_head(&timeout_list);
return t == NULL ? NULL : CONTAINER_OF(t, struct _timeout, node);
}
static struct _timeout *next(struct _timeout *t)
{
sys_dnode_t *n = sys_dlist_peek_next(&timeout_list, &t->node);
return n == NULL ? NULL : CONTAINER_OF(n, struct _timeout, node);
}
static void remove_timeout(struct _timeout *t)
{
if (next(t) != NULL) {
next(t)->dticks += t->dticks;
}
sys_dlist_remove(&t->node);
}
static int32_t elapsed(void)
{
/* While sys_clock_announce() is executing, new relative timeouts will be
* scheduled relatively to the currently firing timeout's original tick
* value (=curr_tick) rather than relative to the current
* sys_clock_elapsed().
*
* This means that timeouts being scheduled from within timeout callbacks
* will be scheduled at well-defined offsets from the currently firing
* timeout.
*
* As a side effect, the same will happen if an ISR with higher priority
* preempts a timeout callback and schedules a timeout.
*
* The distinction is implemented by looking at announce_remaining which
* will be non-zero while sys_clock_announce() is executing and zero
* otherwise.
*/
return announce_remaining == 0 ? sys_clock_elapsed() : 0U;
}
static int32_t next_timeout(void)
{
struct _timeout *to = first();
int32_t ticks_elapsed = elapsed();
int32_t ret;
if ((to == NULL) ||
((int64_t)(to->dticks - ticks_elapsed) > (int64_t)INT_MAX)) {
ret = MAX_WAIT;
} else {
ret = MAX(0, to->dticks - ticks_elapsed);
}
return ret;
}
void z_add_timeout(struct _timeout *to, _timeout_func_t fn,
k_timeout_t timeout)
{
if (K_TIMEOUT_EQ(timeout, K_FOREVER)) {
return;
}
#ifdef CONFIG_KERNEL_COHERENCE
__ASSERT_NO_MSG(arch_mem_coherent(to));
#endif /* CONFIG_KERNEL_COHERENCE */
__ASSERT(!sys_dnode_is_linked(&to->node), "");
to->fn = fn;
K_SPINLOCK(&timeout_lock) {
struct _timeout *t;
if (IS_ENABLED(CONFIG_TIMEOUT_64BIT) &&
Z_TICK_ABS(timeout.ticks) >= 0) {
k_ticks_t ticks = Z_TICK_ABS(timeout.ticks) - curr_tick;
to->dticks = MAX(1, ticks);
} else {
to->dticks = timeout.ticks + 1 + elapsed();
}
for (t = first(); t != NULL; t = next(t)) {
if (t->dticks > to->dticks) {
t->dticks -= to->dticks;
sys_dlist_insert(&t->node, &to->node);
break;
}
to->dticks -= t->dticks;
}
if (t == NULL) {
sys_dlist_append(&timeout_list, &to->node);
}
if (to == first() && announce_remaining == 0) {
sys_clock_set_timeout(next_timeout(), false);
}
}
}
int z_abort_timeout(struct _timeout *to)
{
int ret = -EINVAL;
K_SPINLOCK(&timeout_lock) {
if (sys_dnode_is_linked(&to->node)) {
remove_timeout(to);
ret = 0;
}
}
return ret;
}
/* must be locked */
static k_ticks_t timeout_rem(const struct _timeout *timeout)
{
k_ticks_t ticks = 0;
for (struct _timeout *t = first(); t != NULL; t = next(t)) {
ticks += t->dticks;
if (timeout == t) {
break;
}
}
return ticks;
}
k_ticks_t z_timeout_remaining(const struct _timeout *timeout)
{
k_ticks_t ticks = 0;
K_SPINLOCK(&timeout_lock) {
if (!z_is_inactive_timeout(timeout)) {
ticks = timeout_rem(timeout) - elapsed();
}
}
return ticks;
}
k_ticks_t z_timeout_expires(const struct _timeout *timeout)
{
k_ticks_t ticks = 0;
K_SPINLOCK(&timeout_lock) {
ticks = curr_tick;
if (!z_is_inactive_timeout(timeout)) {
ticks += timeout_rem(timeout);
}
}
return ticks;
}
int32_t z_get_next_timeout_expiry(void)
{
int32_t ret = (int32_t) K_TICKS_FOREVER;
K_SPINLOCK(&timeout_lock) {
ret = next_timeout();
}
return ret;
}
void sys_clock_announce(int32_t ticks)
{
k_spinlock_key_t key = k_spin_lock(&timeout_lock);
/* We release the lock around the callbacks below, so on SMP
* systems someone might be already running the loop. Don't
* race (which will cause paralllel execution of "sequential"
* timeouts and confuse apps), just increment the tick count
* and return.
*/
if (IS_ENABLED(CONFIG_SMP) && (announce_remaining != 0)) {
announce_remaining += ticks;
k_spin_unlock(&timeout_lock, key);
return;
}
announce_remaining = ticks;
struct _timeout *t;
for (t = first();
(t != NULL) && (t->dticks <= announce_remaining);
t = first()) {
int dt = t->dticks;
curr_tick += dt;
t->dticks = 0;
remove_timeout(t);
k_spin_unlock(&timeout_lock, key);
t->fn(t);
key = k_spin_lock(&timeout_lock);
announce_remaining -= dt;
}
if (t != NULL) {
t->dticks -= announce_remaining;
}
curr_tick += announce_remaining;
announce_remaining = 0;
sys_clock_set_timeout(next_timeout(), false);
k_spin_unlock(&timeout_lock, key);
#ifdef CONFIG_TIMESLICING
z_time_slice();
#endif /* CONFIG_TIMESLICING */
}
int64_t sys_clock_tick_get(void)
{
uint64_t t = 0U;
K_SPINLOCK(&timeout_lock) {
t = curr_tick + elapsed();
}
return t;
}
uint32_t sys_clock_tick_get_32(void)
{
#ifdef CONFIG_TICKLESS_KERNEL
return (uint32_t)sys_clock_tick_get();
#else
return (uint32_t)curr_tick;
#endif /* CONFIG_TICKLESS_KERNEL */
}
int64_t z_impl_k_uptime_ticks(void)
{
return sys_clock_tick_get();
}
#ifdef CONFIG_USERSPACE
static inline int64_t z_vrfy_k_uptime_ticks(void)
{
return z_impl_k_uptime_ticks();
}
#include <syscalls/k_uptime_ticks_mrsh.c>
#endif /* CONFIG_USERSPACE */
k_timepoint_t sys_timepoint_calc(k_timeout_t timeout)
{
k_timepoint_t timepoint;
if (K_TIMEOUT_EQ(timeout, K_FOREVER)) {
timepoint.tick = UINT64_MAX;
} else if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
timepoint.tick = 0;
} else {
k_ticks_t dt = timeout.ticks;
if (IS_ENABLED(CONFIG_TIMEOUT_64BIT) && Z_TICK_ABS(dt) >= 0) {
timepoint.tick = Z_TICK_ABS(dt);
} else {
timepoint.tick = sys_clock_tick_get() + MAX(1, dt);
}
}
return timepoint;
}
k_timeout_t sys_timepoint_timeout(k_timepoint_t timepoint)
{
uint64_t now, remaining;
if (timepoint.tick == UINT64_MAX) {
return K_FOREVER;
}
if (timepoint.tick == 0) {
return K_NO_WAIT;
}
now = sys_clock_tick_get();
remaining = (timepoint.tick > now) ? (timepoint.tick - now) : 0;
return K_TICKS(remaining);
}
#ifdef CONFIG_ZTEST
void z_impl_sys_clock_tick_set(uint64_t tick)
{
curr_tick = tick;
}
void z_vrfy_sys_clock_tick_set(uint64_t tick)
{
z_impl_sys_clock_tick_set(tick);
}
#endif /* CONFIG_ZTEST */