zephyr/arch/x86/core/acpi.c

450 lines
9.5 KiB
C

/*
* Copyright (c) 2020 Intel Corporation
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <zephyr/arch/x86/acpi.h>
#include <zephyr/arch/x86/efi.h>
static struct acpi_rsdp *rsdp;
static bool is_rsdp_searched;
static struct acpi_dmar *dmar;
static bool is_dmar_searched;
static bool check_sum(struct acpi_sdt *t)
{
uint8_t sum = 0U, *p = (uint8_t *)t;
for (int i = 0; i < t->length; i++) {
sum += p[i];
}
return sum == 0U;
}
static void find_rsdp(void)
{
uint8_t *bda_seg, *zero_page_base;
uint64_t *search;
uintptr_t search_phys, rsdp_phys = 0U;
size_t search_length = 0U, rsdp_length;
if (is_rsdp_searched) {
/* Looking up for RSDP has already been done */
return;
}
/* Let's first get it from EFI, if enabled */
if (IS_ENABLED(CONFIG_X86_EFI)) {
rsdp_phys = (uintptr_t)efi_get_acpi_rsdp();
if (rsdp_phys != 0UL) {
/* See at found label why this is required */
search_length = sizeof(struct acpi_rsdp);
z_phys_map((uint8_t **)&search, rsdp_phys, search_length, 0);
rsdp = (struct acpi_rsdp *)search;
goto found;
}
}
/* We never identity map the NULL page, so need to map it before
* it can be accessed.
*/
z_phys_map(&zero_page_base, 0, 4096, 0);
/* Physical (real mode!) address 0000:040e stores a (real
* mode!!) segment descriptor pointing to the 1kb Extended
* BIOS Data Area.
*
* We had to memory map this segment descriptor since it is in
* the NULL page. The remaining structures (EBDA etc) are identity
* mapped somewhere within the minefield of reserved regions in the
* first megabyte and are directly accessible.
*/
bda_seg = 0x040e + zero_page_base;
search_phys = (long)(((int)*(uint16_t *)bda_seg) << 4);
/* Unmap after use */
z_phys_unmap(zero_page_base, 4096);
/* Might be nothing there, check before we inspect.
* Note that EBDA usually is in 0x80000 to 0x100000.
*/
if ((POINTER_TO_UINT(search_phys) >= 0x80000UL) &&
(POINTER_TO_UINT(search_phys) < 0x100000UL)) {
search_length = 1024;
z_phys_map((uint8_t **)&search, search_phys, search_length, 0);
for (int i = 0; i < 1024/8; i++) {
if (search[i] == ACPI_RSDP_SIGNATURE) {
rsdp_phys = search_phys + i * 8;
rsdp = (void *)&search[i];
goto found;
}
}
z_phys_unmap((uint8_t *)search, search_length);
}
/* If it's not there, then look for it in the last 128kb of
* real mode memory.
*/
search_phys = 0xe0000;
search_length = 128 * 1024;
z_phys_map((uint8_t **)&search, search_phys, search_length, 0);
rsdp_phys = 0U;
for (int i = 0; i < 128*1024/8; i++) {
if (search[i] == ACPI_RSDP_SIGNATURE) {
rsdp_phys = search_phys + i * 8;
rsdp = (void *)&search[i];
goto found;
}
}
z_phys_unmap((uint8_t *)search, search_length);
rsdp = NULL;
is_rsdp_searched = true;
return;
found:
/* Determine length of RSDP table.
* ACPI v2 and above uses the length field.
* Otherwise, just the size of struct itself.
*/
if (rsdp->revision < 2) {
rsdp_length = sizeof(*rsdp);
} else {
rsdp_length = rsdp->length;
}
/* Need to unmap search since it is still mapped */
if (search_length != 0U) {
z_phys_unmap((uint8_t *)search, search_length);
}
/* Now map the RSDP */
z_phys_map((uint8_t **)&rsdp, rsdp_phys, rsdp_length, 0);
is_rsdp_searched = true;
}
void *z_acpi_find_table(uint32_t signature)
{
uint8_t *mapped_tbl;
uint32_t length;
struct acpi_rsdt *rsdt;
struct acpi_xsdt *xsdt;
struct acpi_sdt *t;
uintptr_t t_phys;
bool tbl_found;
find_rsdp();
if (!rsdp) {
return NULL;
}
if (rsdp->rsdt_ptr != 0U) {
z_phys_map((uint8_t **)&rsdt, rsdp->rsdt_ptr, sizeof(*rsdt), 0);
tbl_found = false;
if (check_sum(&rsdt->sdt)) {
/* Remap the memory to the indicated length of RSDT */
length = rsdt->sdt.length;
z_phys_unmap((uint8_t *)rsdt, sizeof(*rsdt));
z_phys_map((uint8_t **)&rsdt, rsdp->rsdt_ptr, length, 0);
uint32_t *end = (uint32_t *)((char *)rsdt + rsdt->sdt.length);
/* Extra indirection required to avoid
* -Waddress-of-packed-member
*/
void *table_ptrs = &rsdt->table_ptrs[0];
for (uint32_t *tp = table_ptrs; tp < end; tp++) {
t_phys = (long)*tp;
z_phys_map(&mapped_tbl, t_phys, sizeof(*t), 0);
t = (void *)mapped_tbl;
if (t->signature == signature && check_sum(t)) {
tbl_found = true;
break;
}
z_phys_unmap(mapped_tbl, sizeof(*t));
}
}
z_phys_unmap((uint8_t *)rsdt, sizeof(*rsdt));
if (tbl_found) {
goto found;
}
}
if (rsdp->revision < 2) {
return NULL;
}
if (rsdp->xsdt_ptr != 0ULL) {
z_phys_map((uint8_t **)&xsdt, rsdp->xsdt_ptr, sizeof(*xsdt), 0);
tbl_found = false;
if (check_sum(&xsdt->sdt)) {
/* Remap the memory to the indicated length of RSDT */
length = xsdt->sdt.length;
z_phys_unmap((uint8_t *)xsdt, sizeof(*xsdt));
z_phys_map((uint8_t **)&xsdt, rsdp->xsdt_ptr, length, 0);
uint64_t *end = (uint64_t *)((char *)xsdt + xsdt->sdt.length);
/* Extra indirection required to avoid
* -Waddress-of-packed-member
*/
void *table_ptrs = &xsdt->table_ptrs[0];
for (uint64_t *tp = table_ptrs; tp < end; tp++) {
t_phys = (long)*tp;
z_phys_map(&mapped_tbl, t_phys, sizeof(*t), 0);
t = (void *)mapped_tbl;
if (t->signature == signature && check_sum(t)) {
tbl_found = true;
break;
}
z_phys_unmap(mapped_tbl, sizeof(*t));
}
}
z_phys_unmap((uint8_t *)xsdt, sizeof(*xsdt));
if (tbl_found) {
goto found;
}
}
return NULL;
found:
/* Remap to indicated length of the table */
length = t->length;
z_phys_unmap(mapped_tbl, sizeof(*t));
z_phys_map(&mapped_tbl, t_phys, length, 0);
t = (void *)mapped_tbl;
return t;
}
/*
* Return the 'n'th CPU entry from the ACPI MADT, or NULL if not available.
*/
struct acpi_cpu *z_acpi_get_cpu(int n)
{
struct acpi_madt *madt = z_acpi_find_table(ACPI_MADT_SIGNATURE);
uintptr_t base = POINTER_TO_UINT(madt);
uintptr_t offset;
if (!madt) {
return NULL;
}
offset = POINTER_TO_UINT(madt->entries) - base;
while (offset < madt->sdt.length) {
struct acpi_madt_entry *entry;
entry = (struct acpi_madt_entry *)(offset + base);
if (entry->type == ACPI_MADT_ENTRY_CPU) {
struct acpi_cpu *cpu = (struct acpi_cpu *)entry;
if ((cpu->flags & ACPI_CPU_FLAGS_ENABLED) != 0) {
if (n == 0) {
return cpu;
}
--n;
}
}
offset += entry->length;
}
return NULL;
}
static void find_dmar(void)
{
if (is_dmar_searched) {
return;
}
dmar = z_acpi_find_table(ACPI_DMAR_SIGNATURE);
is_dmar_searched = true;
}
struct acpi_dmar *z_acpi_find_dmar(void)
{
find_dmar();
return dmar;
}
struct acpi_drhd *z_acpi_find_drhds(int *n)
{
struct acpi_drhd *drhds = NULL;
uintptr_t offset;
uintptr_t base;
find_dmar();
if (dmar == NULL) {
return NULL;
}
*n = 0;
base = POINTER_TO_UINT(dmar);
offset = POINTER_TO_UINT(dmar->remap_entries) - base;
while (offset < dmar->sdt.length) {
struct acpi_dmar_entry *entry;
entry = (struct acpi_dmar_entry *)(offset + base);
if (entry->type == ACPI_DMAR_TYPE_DRHD) {
if (*n == 0) {
drhds = (struct acpi_drhd *)entry;
}
(*n)++;
} else {
/* DMAR entries are found packed by type so
* if type is not DRHD, we will not encounter one,
* anymore.
*/
break;
}
offset += entry->length;
}
return drhds;
}
struct acpi_dmar_dev_scope *z_acpi_get_drhd_dev_scopes(struct acpi_drhd *drhd,
int *n)
{
uintptr_t offset;
uintptr_t base;
if (drhd->entry.length <= ACPI_DRHD_MIN_SIZE) {
return NULL;
}
*n = 0;
base = POINTER_TO_UINT(drhd);
offset = POINTER_TO_UINT(drhd->device_scope) - base;
while (offset < drhd->entry.length) {
struct acpi_dmar_dev_scope *dev_scope;
dev_scope = (struct acpi_dmar_dev_scope *)(offset + base);
(*n)++;
offset += dev_scope->length;
}
return (*n == 0) ? NULL : drhd->device_scope;
}
struct acpi_dmar_dev_path *
z_acpi_get_dev_scope_paths(struct acpi_dmar_dev_scope *dev_scope, int *n)
{
switch (dev_scope->type) {
case ACPI_DRHD_DEV_SCOPE_PCI_EPD:
/* Fall through */
case ACPI_DRHD_DEV_SCOPE_PCI_SUB_H:
/* Fall through */
case ACPI_DRHD_DEV_SCOPE_IOAPIC:
if (dev_scope->length < (ACPI_DMAR_DEV_SCOPE_MIN_SIZE +
ACPI_DMAR_DEV_PATH_SIZE)) {
return NULL;
}
break;
case ACPI_DRHD_DEV_SCOPE_MSI_CAP_HPET:
/* Fall through */
case ACPI_DRHD_DEV_SCOPE_NAMESPACE_DEV:
if (dev_scope->length != (ACPI_DMAR_DEV_SCOPE_MIN_SIZE +
ACPI_DMAR_DEV_PATH_SIZE)) {
return NULL;
}
break;
default:
return NULL;
}
*n = (dev_scope->length - ACPI_DMAR_DEV_SCOPE_MIN_SIZE) /
ACPI_DMAR_DEV_PATH_SIZE;
return dev_scope->path;
}
uint16_t z_acpi_get_dev_id_from_dmar(uint8_t dev_scope_type)
{
struct acpi_drhd *drhd;
int n_drhd;
find_dmar();
if (dmar == NULL) {
return USHRT_MAX;
}
drhd = z_acpi_find_drhds(&n_drhd);
for (; n_drhd > 0; n_drhd--) {
struct acpi_dmar_dev_scope *dev_scope;
int n_ds;
dev_scope = z_acpi_get_drhd_dev_scopes(drhd, &n_ds);
for (; n_ds > 0; n_ds--) {
if (dev_scope->type == dev_scope_type) {
struct acpi_dmar_dev_path *path;
int n_path;
path = z_acpi_get_dev_scope_paths(dev_scope,
&n_path);
if (n_path > 0) {
union acpi_dmar_id id;
/* Let's over simplify for now:
* we don't look for secondary bus
* and extra paths. We just stop here.
*/
id.bits.bus = dev_scope->start_bus_num;
id.bits.device = path->device;
id.bits.function = path->function;
return id.raw;
}
}
dev_scope = (struct acpi_dmar_dev_scope *)(
POINTER_TO_UINT(dev_scope) + dev_scope->length);
}
drhd = (struct acpi_drhd *)(POINTER_TO_UINT(drhd) +
drhd->entry.length);
}
return USHRT_MAX;
}