zephyr/arch/x86/core/atomic.c

380 lines
10 KiB
C

/*
* Copyright (c) 2015 Intel Corporation
* Copyright (c) 2011-2014 Wind River Systems, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* @file Atomic ops for x86
* DESCRIPTION This module provides the atomic operators for IA-32
* architectures on platforms that support the LOCK prefix instruction.
*
* The atomic operations are guaranteed to be atomic with respect
* to interrupt service routines, and to operations performed by peer
* processors.
*/
#include <atomic.h>
#include <toolchain.h>
/**
*
* @brief Atomic compare-and-set primitive
*
* This routine provides the compare-and-set operator. If the original value at
* <target> equals <oldValue>, then <newValue> is stored at <target> and the
* function returns 1.
*
* If the original value at <target> does not equal <oldValue>, then the store
* is not done and the function returns 0.
*
* The reading of the original value at <target>, the comparison,
* and the write of the new value (if it occurs) all happen atomically with
* respect to both interrupts and accesses of other processors to <target>.
*
* @param target address to be tested
* @param oldValue value to compare against
* @param newValue value to compare against
* @return Returns 1 if <newValue> is written, 0 otherwise.
*/
FUNC_NO_FP int atomic_cas(atomic_t *target, atomic_val_t oldValue,
atomic_val_t newValue)
{
int eax;
__asm__ (
"movl %[oldValue], %%eax\n\t"
"lock cmpxchg %[newValue], (%[target])\n\t"
"sete %%al\n\t"
"movzbl %%al,%%eax"
: "=&a" (eax)
: [newValue] "r" (newValue), [oldValue] "m" (oldValue),
[target] "r" (target));
return eax;
}
/**
*
* @brief Atomic addition primitive
*
* This routine provides the atomic addition operator. The <value> is
* atomically added to the value at <target>, placing the result at <target>,
* and the old value from <target> is returned.
*
* @param target memory location to add to
* @param value the value to add
*
* @return The previous value from <target>
*/
FUNC_NO_FP atomic_val_t atomic_add(atomic_t *target, atomic_val_t value)
{
__asm__ ("lock xadd %[value], (%[target])"
: [value] "+r" (value)
: [target] "r" (target)
: );
return value;
}
/**
*
* @brief Atomic subtraction primitive
*
* This routine provides the atomic subtraction operator. The <value> is
* atomically subtracted from the value at <target>, placing the result at
* <target>, and the old value from <target> is returned.
*
* @param target the memory location to subtract from
* @param value the value to subtract
*
* @return The previous value from <target>
*/
FUNC_NO_FP atomic_val_t atomic_sub(atomic_t *target, atomic_val_t value)
{
__asm__ ("neg %[value]\n\t"
"lock xadd %[value], (%[target])"
: [value] "+r" (value)
: [target] "r" (target)
: );
return value;
}
/**
*
* @brief Atomic increment primitive
*
* @param target memory location to increment
*
* This routine provides the atomic increment operator. The value at <target>
* is atomically incremented by 1, and the old value from <target> is returned.
*
* @return The value from <target> before the increment
*/
FUNC_NO_FP atomic_val_t atomic_inc(atomic_t *target)
{
atomic_t value = 1;
__asm__ ("lock xadd %[value], (%[target])"
: [value] "+r" (value)
: [target] "r" (target));
return value;
}
/**
*
* @brief Atomic decrement primitive
*
* @param target memory location to decrement
*
* This routine provides the atomic decrement operator. The value at <target>
* is atomically decremented by 1, and the old value from <target> is returned.
*
* @return The value from <target> prior to the decrement
*/
FUNC_NO_FP atomic_val_t atomic_dec(atomic_t *target)
{
atomic_t value = -1;
__asm__ ("lock xadd %[value], (%[target])"
: [value] "+r" (value)
: [target] "r" (target));
return value;
}
/**
*
* @brief Atomic get primitive
*
* @param target memory location to read from
*
* This routine provides the atomic get primitive to atomically read
* a value from <target>. It simply does an ordinary load. Note that <target>
* is expected to be aligned to a 4-byte boundary.
*
* @return The value read from <target>
*/
FUNC_NO_FP atomic_val_t atomic_get(const atomic_t *target)
{
return *target;
}
/**
*
* @brief Atomic get-and-set primitive
*
* This routine provides the atomic set operator. The <value> is atomically
* written at <target> and the previous value at <target> is returned.
*
* @param target the memory location to write to
* @param value the value to write
*
* @return The previous value from <target>
*/
FUNC_NO_FP atomic_val_t atomic_set(atomic_t *target, atomic_val_t value)
{
/*
* The 'lock' prefix is not required with the 'xchg' instruction.
* According to the IA-32 instruction reference manual:
*
* "If a memory operand is referenced, the processor's locking
* protocol is automatically implemented for the duration of
* the exchange operation, regardless of the presence
* or absence of the LOCK prefix or of the value of the IOPL."
*/
__asm__ ("xchg %[value], (%[target])"
: [value] "+r" (value)
: [target] "r" (target));
return value;
}
/**
*
* @brief Atomic clear primitive
*
* This routine provides the atomic clear operator. The value of 0 is atomically
* written at <target> and the previous value at <target> is returned. (Hence,
* atomic_clear(pAtomicVar) is equivalent to atomic_set(pAtomicVar, 0).)
*
* @param target the memory location to write
*
* @return The previous value from <target>
*/
FUNC_NO_FP atomic_val_t atomic_clear(atomic_t *target)
{
atomic_t value = 0;
/* See note in atomic_set about non-use of 'lock' here */
__asm__ ("xchg %[value], (%[target])"
: [value] "+r" (value)
: [target] "r" (target));
return value;
}
/**
*
* @brief Atomic bitwise inclusive OR primitive
*
* This routine provides the atomic bitwise inclusive OR operator. The <value>
* is atomically bitwise OR'ed with the value at <target>, placing the result
* at <target>, and the previous value at <target> is returned.
*
* @param target the memory location to be modified
* @param value the value to OR
*
* @return The previous value from <target>
*/
FUNC_NO_FP atomic_val_t atomic_or(atomic_t *target, atomic_val_t value)
{
atomic_val_t eax;
__asm__ volatile (
"mov %[target], %%edx\n\t"
/*
* Dereference target pointer and store in EAX, we will
* use this later to ensure the value hasn't changed
*/
"mov (%%edx), %%eax\n\t"
"1:\n\t"
/*
* Set ECX to be (value <op> *eax), use ECX so we don't lose
* the original value in case we need to do this again
*/
"mov %[value], %%ecx\n\t"
"or %%eax, %%ecx\n\t"
/*
* Check if *EDX (which is *target) == EAX
* If they differ, *target was changed, EAX gets updated with
* the new value of *target, and we try again
* If they are the same, EAX now has ECX's value which is
* what we want to return to the caller.
*/
"lock cmpxchg %%ecx, (%%edx)\n\t"
"jnz 1b"
: "=a" (eax)
: [target] "m" (target), [value] "m" (value)
: "ecx", "edx");
return eax;
}
/**
*
* @brief Atomic bitwise exclusive OR (XOR) primitive
*
* This routine provides the atomic bitwise exclusive OR operator. The <value>
* is atomically bitwise XOR'ed with the value at <target>, placing the result
* at <target>, and the previous value at <target> is returned.
*
* @param target the memory location to be modified
* @param value the value to XOR
*
* @return The previous value from <target>
*/
FUNC_NO_FP atomic_val_t atomic_xor(atomic_t *target, atomic_val_t value)
{
/*
* See comments in atomic_or() for explanation on how
* this works
*/
atomic_val_t eax;
__asm__ volatile (
"mov %[target], %%edx\n\t"
"mov (%%edx), %%eax\n\t"
"1:\n\t"
"mov %[value], %%ecx\n\t"
"xor %%eax, %%ecx\n\t"
"lock cmpxchg %%ecx, (%%edx)\n\t"
"jnz 1b"
: "=a" (eax)
: [target] "m" (target), [value] "m" (value)
: "ecx", "edx");
return eax;
}
/**
*
* @brief Atomic bitwise AND primitive
*
* This routine provides the atomic bitwise AND operator. The <value> is
* atomically bitwise AND'ed with the value at <target>, placing the result
* at <target>, and the previous value at <target> is returned.
*
* @param target the memory location to be modified
* @param value the value to AND
*
* @return The previous value from <target>
*/
FUNC_NO_FP atomic_val_t atomic_and(atomic_t *target, atomic_val_t value)
{
/*
* See comments in atomic_or() for explanation on how
* this works
*/
atomic_val_t eax;
__asm__ volatile (
"mov %[target], %%edx\n\t"
"mov (%%edx), %%eax\n\t"
"1:\n\t"
"mov %[value], %%ecx\n\t"
"and %%eax, %%ecx\n\t"
"lock cmpxchg %%ecx, (%%edx)\n\t"
"jnz 1b"
: "=a" (eax)
: [target] "m" (target), [value] "m" (value)
: "ecx", "edx");
return eax;
}
/**
*
* @brief Atomic bitwise NAND primitive
*
* This routine provides the atomic bitwise NAND operator. The <value> is
* atomically bitwise NAND'ed with the value at <target>, placing the result
* at <target>, and the previous value at <target> is returned.
*
* @param target the memory location to be modified
* @param value the value to NAND
*
* @return The previous value from <target>
*/
FUNC_NO_FP atomic_val_t atomic_nand(atomic_t *target, atomic_val_t value)
{
/*
* See comments in atomic_or() for explanation on how
* this works
*/
atomic_val_t eax;
__asm__ volatile (
"mov %[target], %%edx\n\t"
"mov (%%edx), %%eax\n\t"
"1:\n\t"
"mov %[value], %%ecx\n\t"
"and %%eax, %%ecx\n\t"
"not %%ecx\n\t"
"lock cmpxchg %%ecx, (%%edx)\n\t"
"jnz 1b"
: "=a" (eax)
: [target] "m" (target), [value] "m" (value)
: "ecx", "edx");
return eax;
}