zephyr/arch/x86/core/ia32/thread.c

253 lines
7.7 KiB
C

/*
* Copyright (c) 2010-2015 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Thread support primitives
*
* This module provides core thread related primitives for the IA-32
* processor architecture.
*/
#include <toolchain.h>
#include <linker/sections.h>
#include <kernel_structs.h>
#include <wait_q.h>
#include <arch/x86/mmustructs.h>
#include <sys/printk.h>
/* forward declaration */
/* Initial thread stack frame, such that everything is laid out as expected
* for when z_swap() switches to it for the first time.
*/
struct _x86_initial_frame {
u32_t swap_retval;
u32_t ebp;
u32_t ebx;
u32_t esi;
u32_t edi;
void *thread_entry;
u32_t eflags;
k_thread_entry_t entry;
void *p1;
void *p2;
void *p3;
};
#ifdef CONFIG_X86_USERSPACE
/* Nothing to do here if KPTI is enabled. We are in supervisor mode, so the
* active PDPT is the kernel's page tables. If the incoming thread is in user
* mode we are going to switch CR3 to the thread- specific tables when we go
* through z_x86_trampoline_to_user.
*
* We don't need to update _main_tss either, privilege elevation always lands
* on the trampoline stack and the irq/sycall code has to manually transition
* off of it to the thread's kernel stack after switching page tables.
*/
#ifndef CONFIG_X86_KPTI
/* Change to new set of page tables. ONLY intended for use from
* z_x88_swap_update_page_tables(). This changes CR3, no memory access
* afterwards is legal unless it is known for sure that the relevant
* mappings are identical wrt supervisor mode until we iret out.
*/
static inline void page_tables_set(struct x86_page_tables *ptables)
{
__asm__ volatile("movl %0, %%cr3\n\t" : : "r" (ptables) : "memory");
}
/* Update the to the incoming thread's page table, and update the location
* of the privilege elevation stack.
*
* May be called ONLY during context switch and when supervisor
* threads drop synchronously to user mode. Hot code path!
*/
void z_x86_swap_update_page_tables(struct k_thread *incoming)
{
struct x86_page_tables *ptables;
/* If we're a user thread, we want the active page tables to
* be the per-thread instance.
*
* However, if we're a supervisor thread, use the master
* kernel page tables instead.
*/
if ((incoming->base.user_options & K_USER) != 0) {
ptables = z_x86_thread_page_tables_get(incoming);
/* In case of privilege elevation, use the incoming
* thread's kernel stack. This area starts immediately
* before the PDPT.
*/
_main_tss.esp0 = (uintptr_t)ptables;
} else {
ptables = &z_x86_kernel_ptables;
}
/* Check first that we actually need to do this, since setting
* CR3 involves an expensive full TLB flush.
*/
if (ptables != z_x86_page_tables_get()) {
page_tables_set(ptables);
}
}
#endif /* CONFIG_X86_KPTI */
static FUNC_NORETURN void drop_to_user(k_thread_entry_t user_entry,
void *p1, void *p2, void *p3)
{
u32_t stack_end;
/* Transition will reset stack pointer to initial, discarding
* any old context since this is a one-way operation
*/
stack_end = STACK_ROUND_DOWN(_current->stack_info.start +
_current->stack_info.size);
z_x86_userspace_enter(user_entry, p1, p2, p3, stack_end,
_current->stack_info.start);
CODE_UNREACHABLE;
}
FUNC_NORETURN void z_arch_user_mode_enter(k_thread_entry_t user_entry,
void *p1, void *p2, void *p3)
{
struct z_x86_thread_stack_header *header =
(struct z_x86_thread_stack_header *)_current->stack_obj;
/* Set up the kernel stack used during privilege elevation */
z_x86_mmu_set_flags(&z_x86_kernel_ptables, &header->privilege_stack,
MMU_PAGE_SIZE, MMU_ENTRY_WRITE, Z_X86_MMU_RW,
true);
/* Initialize per-thread page tables, since that wasn't done when
* the thread was initialized (K_USER was not set at creation time)
*/
z_x86_thread_pt_init(_current);
/* Apply memory domain configuration, if assigned */
if (_current->mem_domain_info.mem_domain != NULL) {
z_x86_apply_mem_domain(z_x86_thread_page_tables_get(_current),
_current->mem_domain_info.mem_domain);
}
#ifndef CONFIG_X86_KPTI
/* We're synchronously dropping into user mode from a thread that
* used to be in supervisor mode. K_USER flag has now been set, but
* Need to swap from the kernel's page tables to the per-thread page
* tables.
*
* Safe to update page tables from here, all tables are identity-
* mapped and memory areas used before the ring 3 transition all
* have the same attributes wrt supervisor mode access.
*/
z_x86_swap_update_page_tables(_current);
#endif
drop_to_user(user_entry, p1, p2, p3);
}
/* Implemented in userspace.S */
extern void z_x86_syscall_entry_stub(void);
/* Syscalls invoked by 'int 0x80'. Installed in the IDT at DPL=3 so that
* userspace can invoke it.
*/
NANO_CPU_INT_REGISTER(z_x86_syscall_entry_stub, -1, -1, 0x80, 3);
#endif /* CONFIG_X86_USERSPACE */
#if defined(CONFIG_FLOAT) && defined(CONFIG_FP_SHARING)
extern int z_float_disable(struct k_thread *thread);
int z_arch_float_disable(struct k_thread *thread)
{
#if defined(CONFIG_LAZY_FP_SHARING)
return z_float_disable(thread);
#else
return -ENOSYS;
#endif /* CONFIG_LAZY_FP_SHARING */
}
#endif /* CONFIG_FLOAT && CONFIG_FP_SHARING */
void z_arch_new_thread(struct k_thread *thread, k_thread_stack_t *stack,
size_t stack_size, k_thread_entry_t entry,
void *parameter1, void *parameter2, void *parameter3,
int priority, unsigned int options)
{
char *stack_buf;
char *stack_high;
struct _x86_initial_frame *initial_frame;
#if defined(CONFIG_X86_USERSPACE) || defined(CONFIG_X86_STACK_PROTECTION)
struct z_x86_thread_stack_header *header =
(struct z_x86_thread_stack_header *)stack;
#endif
Z_ASSERT_VALID_PRIO(priority, entry);
stack_buf = Z_THREAD_STACK_BUFFER(stack);
z_new_thread_init(thread, stack_buf, stack_size, priority, options);
#ifdef CONFIG_X86_USERSPACE
/* Set MMU properties for the privilege mode elevation stack.
* If we're not starting in user mode, this functions as a guard
* area.
*/
z_x86_mmu_set_flags(&z_x86_kernel_ptables, &header->privilege_stack,
MMU_PAGE_SIZE,
((options & K_USER) == 0U) ? MMU_ENTRY_READ : MMU_ENTRY_WRITE,
Z_X86_MMU_RW, true);
#endif /* CONFIG_X86_USERSPACE */
#if CONFIG_X86_STACK_PROTECTION
/* Set guard area to read-only to catch stack overflows */
z_x86_mmu_set_flags(&z_x86_kernel_ptables, &header->guard_page,
MMU_PAGE_SIZE, MMU_ENTRY_READ, Z_X86_MMU_RW,
true);
#endif
stack_high = (char *)STACK_ROUND_DOWN(stack_buf + stack_size);
/* Create an initial context on the stack expected by z_swap() */
initial_frame = (struct _x86_initial_frame *)
(stack_high - sizeof(struct _x86_initial_frame));
/* z_thread_entry() arguments */
initial_frame->entry = entry;
initial_frame->p1 = parameter1;
initial_frame->p2 = parameter2;
initial_frame->p3 = parameter3;
initial_frame->eflags = EFLAGS_INITIAL;
#ifdef CONFIG_X86_USERSPACE
if ((options & K_USER) != 0U) {
z_x86_thread_pt_init(thread);
#ifdef _THREAD_WRAPPER_REQUIRED
initial_frame->edi = (u32_t)drop_to_user;
initial_frame->thread_entry = z_x86_thread_entry_wrapper;
#else
initial_frame->thread_entry = drop_to_user;
#endif /* _THREAD_WRAPPER_REQUIRED */
} else
#endif /* CONFIG_X86_USERSPACE */
{
#ifdef _THREAD_WRAPPER_REQUIRED
initial_frame->edi = (u32_t)z_thread_entry;
initial_frame->thread_entry = z_x86_thread_entry_wrapper;
#else
initial_frame->thread_entry = z_thread_entry;
#endif
}
/* Remaining _x86_initial_frame members can be garbage, z_thread_entry()
* doesn't care about their state when execution begins
*/
thread->callee_saved.esp = (unsigned long)initial_frame;
#if defined(CONFIG_LAZY_FP_SHARING)
thread->arch.excNestCount = 0;
#endif /* CONFIG_LAZY_FP_SHARING */
thread->arch.flags = 0;
}