511 lines
12 KiB
C
511 lines
12 KiB
C
/* task kernel services */
|
|
|
|
/*
|
|
* Copyright (c) 1997-2010, 2013-2015 Wind River Systems, Inc.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
|
|
#include <microkernel.h>
|
|
#include <nanokernel.h>
|
|
#include <arch/cpu.h>
|
|
#include <string.h>
|
|
#include <toolchain.h>
|
|
#include <sections.h>
|
|
|
|
#include <micro_private.h>
|
|
#include <nano_private.h>
|
|
#include <start_task_arch.h>
|
|
#include <misc/debug/object_tracing_common.h>
|
|
|
|
extern ktask_t _k_task_ptr_start[];
|
|
extern ktask_t _k_task_ptr_end[];
|
|
|
|
|
|
ktask_t task_id_get(void)
|
|
{
|
|
return _k_current_task->id;
|
|
}
|
|
|
|
/**
|
|
* @brief Reset the specified task state bits
|
|
*
|
|
* This routine resets the specified task state bits. When a task's state bits
|
|
* are zero, the task may be scheduled to run. The tasks's state bits are a
|
|
* bitmask of the TF_xxx bits. Each TF_xxx bit indicates a reason why the task
|
|
* must not be scheduled to run.
|
|
*
|
|
* @param X Pointer to task
|
|
* @param bits Bitmask of TF_xxx bits to reset
|
|
* @return N/A
|
|
*
|
|
* @internal
|
|
* When operating on microkernel objects, this routine is invoked in the
|
|
* context of the microkernel server fiber. However, since microkernel tasks
|
|
* may pend/unpend on nanokernel objects, interrupts must be locked to
|
|
* prevent data corruption.
|
|
* @endinternal
|
|
*/
|
|
void _k_state_bit_reset(struct k_task *X, uint32_t bits)
|
|
{
|
|
unsigned int key = irq_lock();
|
|
uint32_t f_old = X->state; /* old state bits */
|
|
uint32_t f_new = f_old & ~bits; /* new state bits */
|
|
|
|
X->state = f_new; /* Update task's state bits */
|
|
|
|
if ((f_old != 0) && (f_new == 0)) {
|
|
/*
|
|
* The task may now be scheduled to run (but could not
|
|
* previously) as all the TF_xxx bits are clear. It must
|
|
* be added to the list of schedulable tasks.
|
|
*/
|
|
|
|
struct k_tqhd *H = _k_task_priority_list + X->priority;
|
|
|
|
X->next = NULL;
|
|
H->tail->next = X;
|
|
H->tail = X;
|
|
_k_task_priority_bitmap[X->priority >> 5] |=
|
|
(1 << (X->priority & 0x1F));
|
|
}
|
|
|
|
irq_unlock(key);
|
|
|
|
#ifdef CONFIG_TASK_MONITOR
|
|
f_new ^= f_old;
|
|
if ((_k_monitor_mask & MON_STATE) && (f_new)) {
|
|
/*
|
|
* Task monitoring is enabled and the new state bits are
|
|
* different than the old state bits.
|
|
*
|
|
* <f_new> now contains the bits that are different.
|
|
*/
|
|
|
|
_k_task_monitor(X, f_new | MO_STBIT0);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Set specified task state bits
|
|
*
|
|
* This routine sets the specified task state bits. When a task's state bits
|
|
* are non-zero, the task will not be scheduled to run. The task's state bits
|
|
* are a bitmask of the TF_xxx bits. Each TF_xxx bit indicates a reason why
|
|
* the task must not be scheduled to run.
|
|
* @param task_ptr Task pointer
|
|
* @param bitmask of TF_xxx bits to set
|
|
* @return N/A
|
|
*
|
|
* @internal
|
|
* When operating on microkernel objects, this routine is invoked in the
|
|
* context of the microkernel server fiber. However, since microkernel tasks
|
|
* may pend/unpend on nanokernel objects, interrupts must be locked to
|
|
* prevent data corruption.
|
|
* @endinternal
|
|
*/
|
|
void _k_state_bit_set(struct k_task *task_ptr, uint32_t bits)
|
|
{
|
|
unsigned int key = irq_lock();
|
|
uint32_t old_state_bits = task_ptr->state;
|
|
uint32_t new_state_bits = old_state_bits | bits;
|
|
|
|
task_ptr->state = new_state_bits;
|
|
|
|
if ((old_state_bits == 0) && (new_state_bits != 0)) {
|
|
/*
|
|
* The task could have been scheduled to run ([state] was 0)
|
|
* but can not be scheduled to run anymore at least one TF_xxx
|
|
* bit has been set. Remove it from the list of schedulable
|
|
* tasks.
|
|
*/
|
|
#if defined(__GNUC__)
|
|
#if defined(CONFIG_ARM)
|
|
/*
|
|
* Avoid bad code generation by certain gcc toolchains for ARM
|
|
* when an optimization setting of -O2 or above is used.
|
|
*
|
|
* Specifically, this issue has been seen with ARM gcc version
|
|
* 4.6.3 (Sourcery CodeBench Lite 2012.03-56): The 'volatile'
|
|
* attribute is added to the following variable to prevent it
|
|
* from being lost--otherwise the register that holds its value
|
|
* is reused, but the compiled code uses it later on as if it
|
|
* was still that variable.
|
|
*/
|
|
volatile
|
|
#endif
|
|
#endif
|
|
struct k_tqhd *task_queue = _k_task_priority_list +
|
|
task_ptr->priority;
|
|
struct k_task *cur_task = (struct k_task *)(&task_queue->head);
|
|
|
|
/*
|
|
* Search in the list for this task priority level,
|
|
* and remove the task.
|
|
*/
|
|
while (cur_task->next != task_ptr) {
|
|
cur_task = cur_task->next;
|
|
}
|
|
|
|
cur_task->next = task_ptr->next;
|
|
|
|
if (task_queue->tail == task_ptr) {
|
|
task_queue->tail = cur_task;
|
|
}
|
|
|
|
/*
|
|
* If there are no more tasks of this priority that are
|
|
* runnable, then clear that bit in the global priority bit map.
|
|
*/
|
|
if (task_queue->head == NULL) {
|
|
_k_task_priority_bitmap[task_ptr->priority >> 5] &=
|
|
~(1 << (task_ptr->priority & 0x1F));
|
|
}
|
|
}
|
|
|
|
irq_unlock(key);
|
|
|
|
#ifdef CONFIG_TASK_MONITOR
|
|
new_state_bits ^= old_state_bits;
|
|
if ((_k_monitor_mask & MON_STATE) && (new_state_bits)) {
|
|
/*
|
|
* Task monitoring is enabled and the new state bits are
|
|
* different than the old state bits.
|
|
*
|
|
* <new_state_bits> now contains the bits that are different.
|
|
*/
|
|
|
|
_k_task_monitor(task_ptr, new_state_bits | MO_STBIT1);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize and start a task
|
|
*
|
|
* @param X Pointer to task control block
|
|
* @param func Entry point for task
|
|
* @return N/A
|
|
*/
|
|
static void start_task(struct k_task *X, void (*func)(void))
|
|
{
|
|
unsigned int task_options;
|
|
void *parameter1;
|
|
|
|
/* Note: the field X->worksize now represents the task size in bytes */
|
|
|
|
task_options = 0;
|
|
_START_TASK_ARCH(X, &task_options);
|
|
|
|
/*
|
|
* The 'func' argument to _new_thread() represents the entry point of
|
|
* the
|
|
* kernel task. The 'parameter1', 'parameter2', & 'parameter3'
|
|
* arguments
|
|
* are not applicable to such tasks. A 'priority' of -1 indicates that
|
|
* the thread is a task, rather than a fiber.
|
|
*/
|
|
|
|
#ifdef CONFIG_THREAD_MONITOR
|
|
parameter1 = (void *)X;
|
|
#else
|
|
parameter1 = (void *)0;
|
|
#endif
|
|
|
|
_new_thread((char *)X->workspace, /* pStackMem */
|
|
X->worksize, /* stackSize */
|
|
X, /* microkernel task pointer */
|
|
(_thread_entry_t)func, /* pEntry */
|
|
parameter1, /* parameter1 */
|
|
(void *)0, /* parameter2 */
|
|
(void *)0, /* parameter3 */
|
|
-1, /* priority */
|
|
task_options /* options */
|
|
);
|
|
|
|
X->fn_abort = NULL;
|
|
|
|
_k_state_bit_reset(X, TF_STOP | TF_TERM);
|
|
}
|
|
|
|
/**
|
|
* @brief Abort a task
|
|
*
|
|
* This routine aborts the specified task.
|
|
* @param X Task pointer
|
|
* @return N/A
|
|
*/
|
|
static void abort_task(struct k_task *X)
|
|
{
|
|
|
|
/* Do normal thread exit cleanup */
|
|
|
|
_thread_exit((struct tcs *)X->workspace);
|
|
|
|
/* Set TF_TERM and TF_STOP state flags */
|
|
|
|
_k_state_bit_set(X, TF_STOP | TF_TERM);
|
|
|
|
/* Invoke abort function, if there is one */
|
|
|
|
if (X->fn_abort != NULL) {
|
|
X->fn_abort();
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_ARCH_HAS_TASK_ABORT
|
|
/**
|
|
* @brief Microkernel handler for fatal task errors
|
|
*
|
|
* To be invoked when a task aborts implicitly, either by returning from its
|
|
* entry point or due to a software or hardware fault.
|
|
*
|
|
* @return does not return
|
|
*/
|
|
FUNC_NORETURN void _TaskAbort(void)
|
|
{
|
|
_task_ioctl(_k_current_task->id, TASK_ABORT);
|
|
|
|
/*
|
|
* Compiler can't tell that _task_ioctl() won't return and issues
|
|
* a warning unless we explicitly tell it that control never gets this
|
|
* far.
|
|
*/
|
|
|
|
CODE_UNREACHABLE;
|
|
}
|
|
#endif
|
|
|
|
|
|
void task_abort_handler_set(void (*func)(void))
|
|
{
|
|
_k_current_task->fn_abort = func;
|
|
}
|
|
|
|
/**
|
|
* @brief Handle a task operation request
|
|
*
|
|
* This routine handles any one of the following task operation requests:
|
|
* starting either a kernel or user task, aborting a task, suspending a task,
|
|
* resuming a task, blocking a task or unblocking a task
|
|
* @param A Arguments
|
|
* @return N/A
|
|
*/
|
|
void _k_task_op(struct k_args *A)
|
|
{
|
|
ktask_t Tid = A->args.g1.task;
|
|
struct k_task *X = (struct k_task *)Tid;
|
|
|
|
switch (A->args.g1.opt) {
|
|
case TASK_START:
|
|
start_task(X, X->fn_start);
|
|
SYS_TRACING_OBJ_INIT(micro_task, X);
|
|
break;
|
|
case TASK_ABORT:
|
|
abort_task(X);
|
|
break;
|
|
case TASK_SUSPEND:
|
|
_k_state_bit_set(X, TF_SUSP);
|
|
break;
|
|
case TASK_RESUME:
|
|
_k_state_bit_reset(X, TF_SUSP);
|
|
break;
|
|
case TASK_BLOCK:
|
|
_k_state_bit_set(X, TF_BLCK);
|
|
break;
|
|
case TASK_UNBLOCK:
|
|
_k_state_bit_reset(X, TF_BLCK);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Task operations
|
|
* @param task Task on which to operate
|
|
* @param opt Task operation
|
|
* @return N/A
|
|
*/
|
|
void _task_ioctl(ktask_t task, int opt)
|
|
{
|
|
struct k_args A;
|
|
|
|
A.Comm = _K_SVC_TASK_OP;
|
|
A.args.g1.task = task;
|
|
A.args.g1.opt = opt;
|
|
KERNEL_ENTRY(&A);
|
|
}
|
|
|
|
/**
|
|
* @brief Handle task group operation request
|
|
*
|
|
* This routine handles any one of the following task group operations requests:
|
|
* starting either kernel or user tasks, aborting tasks, suspending tasks,
|
|
* resuming tasks, blocking tasks or unblocking tasks
|
|
* @param A Arguments
|
|
* @return N/A
|
|
*/
|
|
void _k_task_group_op(struct k_args *A)
|
|
{
|
|
ktask_group_t grp = A->args.g1.group;
|
|
int opt = A->args.g1.opt;
|
|
struct k_task *X;
|
|
ktask_t *task_id;
|
|
|
|
#ifdef CONFIG_TASK_DEBUG
|
|
if (opt == TASK_GROUP_BLOCK)
|
|
_k_debug_halt = 1;
|
|
if (opt == TASK_GROUP_UNBLOCK)
|
|
_k_debug_halt = 0;
|
|
#endif
|
|
|
|
for (task_id = _k_task_ptr_start; task_id < _k_task_ptr_end;
|
|
task_id++) {
|
|
X = (struct k_task *)(*task_id);
|
|
if (X->group & grp) {
|
|
switch (opt) {
|
|
case TASK_GROUP_START:
|
|
start_task(X, X->fn_start);
|
|
SYS_TRACING_OBJ_INIT(micro_task, X);
|
|
break;
|
|
case TASK_GROUP_ABORT:
|
|
abort_task(X);
|
|
break;
|
|
case TASK_GROUP_SUSPEND:
|
|
_k_state_bit_set(X, TF_SUSP);
|
|
break;
|
|
case TASK_GROUP_RESUME:
|
|
_k_state_bit_reset(X, TF_SUSP);
|
|
break;
|
|
case TASK_GROUP_BLOCK:
|
|
_k_state_bit_set(X, TF_BLCK);
|
|
break;
|
|
case TASK_GROUP_UNBLOCK:
|
|
_k_state_bit_reset(X, TF_BLCK);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* @brief Task group operations
|
|
* @param group Task group
|
|
* @param opt Operation
|
|
* @return N/A
|
|
*/
|
|
void _task_group_ioctl(ktask_group_t group, int opt)
|
|
{
|
|
struct k_args A;
|
|
|
|
A.Comm = _K_SVC_TASK_GROUP_OP;
|
|
A.args.g1.group = group;
|
|
A.args.g1.opt = opt;
|
|
KERNEL_ENTRY(&A);
|
|
}
|
|
|
|
|
|
kpriority_t task_group_mask_get(void)
|
|
{
|
|
return _k_current_task->group;
|
|
}
|
|
|
|
void task_group_join(uint32_t groups)
|
|
{
|
|
_k_current_task->group |= groups;
|
|
}
|
|
|
|
void task_group_leave(uint32_t groups)
|
|
{
|
|
_k_current_task->group &= ~groups;
|
|
}
|
|
|
|
/**
|
|
* @brief Get task priority
|
|
*
|
|
* @return priority of current task
|
|
*/
|
|
kpriority_t task_priority_get(void)
|
|
{
|
|
return _k_current_task->priority;
|
|
}
|
|
|
|
/**
|
|
* @brief Handle task set priority request
|
|
* @param A Arguments
|
|
* @return N/A
|
|
*/
|
|
void _k_task_priority_set(struct k_args *A)
|
|
{
|
|
ktask_t Tid = A->args.g1.task;
|
|
struct k_task *X = (struct k_task *)Tid;
|
|
|
|
_k_state_bit_set(X, TF_PRIO);
|
|
X->priority = A->args.g1.prio;
|
|
_k_state_bit_reset(X, TF_PRIO);
|
|
|
|
if (A->alloc)
|
|
FREEARGS(A);
|
|
}
|
|
|
|
|
|
void task_priority_set(ktask_t task, kpriority_t prio)
|
|
{
|
|
struct k_args A;
|
|
|
|
A.Comm = _K_SVC_TASK_PRIORITY_SET;
|
|
A.args.g1.task = task;
|
|
A.args.g1.prio = prio;
|
|
KERNEL_ENTRY(&A);
|
|
}
|
|
|
|
/**
|
|
* @brief Handle task yield request
|
|
*
|
|
* @param A Arguments
|
|
* @return N/A
|
|
*/
|
|
void _k_task_yield(struct k_args *A)
|
|
{
|
|
struct k_tqhd *H = _k_task_priority_list + _k_current_task->priority;
|
|
struct k_task *X = _k_current_task->next;
|
|
|
|
ARG_UNUSED(A);
|
|
if (X && H->head == _k_current_task) {
|
|
_k_current_task->next = NULL;
|
|
H->tail->next = _k_current_task;
|
|
H->tail = _k_current_task;
|
|
H->head = X;
|
|
}
|
|
}
|
|
|
|
|
|
void task_yield(void)
|
|
{
|
|
struct k_args A;
|
|
|
|
A.Comm = _K_SVC_TASK_YIELD;
|
|
KERNEL_ENTRY(&A);
|
|
}
|
|
|
|
|
|
void task_entry_set(ktask_t task, void (*func)(void))
|
|
{
|
|
struct k_task *X = (struct k_task *)task;
|
|
|
|
X->fn_start = func;
|
|
}
|
|
|