zephyr/include/arch/x86/asm_inline_gcc.h

490 lines
8.9 KiB
C

/* Intel x86 GCC specific public inline assembler functions and macros */
/*
* Copyright (c) 2015, Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/* Either public functions or macros or invoked by public functions */
#ifndef ZEPHYR_INCLUDE_ARCH_X86_ASM_INLINE_GCC_H_
#define ZEPHYR_INCLUDE_ARCH_X86_ASM_INLINE_GCC_H_
/*
* The file must not be included directly
* Include kernel.h instead
*/
#include <sys_io.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifndef _ASMLANGUAGE
#include <zephyr/types.h>
#include <stddef.h>
/**
*
* @internal
*
* @brief Disable all interrupts on the CPU
*
* GCC assembly internals of irq_lock(). See irq_lock() for a complete
* description.
*
* @return An architecture-dependent lock-out key representing the
* "interrupt disable state" prior to the call.
*/
static ALWAYS_INLINE unsigned int _do_irq_lock(void)
{
unsigned int key;
__asm__ volatile (
"pushfl;\n\t"
"cli;\n\t"
"popl %0;\n\t"
: "=g" (key)
:
: "memory"
);
return key;
}
/**
*
* @internal
*
* @brief Enable all interrupts on the CPU (inline)
*
* GCC assembly internals of irq_lock_unlock(). See irq_lock_unlock() for a
* complete description.
*
* @return N/A
*/
static ALWAYS_INLINE void z_do_irq_unlock(void)
{
__asm__ volatile (
"sti;\n\t"
: : : "memory"
);
}
/**
*
* @brief find least significant bit set in a 32-bit word
*
* This routine finds the first bit set starting from the least significant bit
* in the argument passed in and returns the index of that bit. Bits are
* numbered starting at 1 from the least significant bit. A return value of
* zero indicates that the value passed is zero.
*
* @return least significant bit set, 0 if @a op is 0
*
* @internal
* For Intel64 (x86_64) architectures, the 'cmovzl' can be removed and leverage
* the fact that the 'bsfl' doesn't modify the destination operand when the
* source operand is zero. The "bitpos" variable can be preloaded into the
* destination register, and given the unconditional ++bitpos that is performed
* after the 'cmovzl', the correct results are yielded.
*/
static ALWAYS_INLINE unsigned int find_lsb_set(u32_t op)
{
unsigned int bitpos;
__asm__ volatile (
#if defined(CONFIG_CMOV)
"bsfl %1, %0;\n\t"
"cmovzl %2, %0;\n\t"
: "=r" (bitpos)
: "rm" (op), "r" (-1)
: "cc"
#else
"bsfl %1, %0;\n\t"
"jnz 1f;\n\t"
"movl $-1, %0;\n\t"
"1:\n\t"
: "=r" (bitpos)
: "rm" (op)
: "cc"
#endif /* CONFIG_CMOV */
);
return (bitpos + 1);
}
/**
*
* @brief find most significant bit set in a 32-bit word
*
* This routine finds the first bit set starting from the most significant bit
* in the argument passed in and returns the index of that bit. Bits are
* numbered starting at 1 from the least significant bit. A return value of
* zero indicates that the value passed is zero.
*
* @return most significant bit set, 0 if @a op is 0
*
* @internal
* For Intel64 (x86_64) architectures, the 'cmovzl' can be removed and leverage
* the fact that the 'bsfl' doesn't modify the destination operand when the
* source operand is zero. The "bitpos" variable can be preloaded into the
* destination register, and given the unconditional ++bitpos that is performed
* after the 'cmovzl', the correct results are yielded.
*/
static ALWAYS_INLINE unsigned int find_msb_set(u32_t op)
{
unsigned int bitpos;
__asm__ volatile (
#if defined(CONFIG_CMOV)
"bsrl %1, %0;\n\t"
"cmovzl %2, %0;\n\t"
: "=r" (bitpos)
: "rm" (op), "r" (-1)
#else
"bsrl %1, %0;\n\t"
"jnz 1f;\n\t"
"movl $-1, %0;\n\t"
"1:\n\t"
: "=r" (bitpos)
: "rm" (op)
: "cc"
#endif /* CONFIG_CMOV */
);
return (bitpos + 1);
}
/**
* @brief read timestamp register ensuring serialization
*/
static inline u64_t z_tsc_read(void)
{
union {
struct {
u32_t lo;
u32_t hi;
};
u64_t value;
} rv;
/* rdtsc & cpuid clobbers eax, ebx, ecx and edx registers */
__asm__ volatile (/* serialize */
"xorl %%eax,%%eax;\n\t"
"cpuid;\n\t"
:
:
: "%eax", "%ebx", "%ecx", "%edx"
);
/*
* We cannot use "=A", since this would use %rax on x86_64 and
* return only the lower 32bits of the TSC
*/
__asm__ volatile ("rdtsc" : "=a" (rv.lo), "=d" (rv.hi));
return rv.value;
}
/**
*
* @brief Get a 32 bit CPU timestamp counter
*
* @return a 32-bit number
*/
static ALWAYS_INLINE
u32_t z_do_read_cpu_timestamp32(void)
{
u32_t rv;
__asm__ volatile("rdtsc" : "=a"(rv) : : "%edx");
return rv;
}
/* Implementation of sys_io.h's documented functions */
static ALWAYS_INLINE
void sys_out8(u8_t data, io_port_t port)
{
__asm__ volatile("outb %b0, %w1;\n\t"
:
: "a"(data), "Nd"(port));
}
static ALWAYS_INLINE
u8_t sys_in8(io_port_t port)
{
u8_t ret;
__asm__ volatile("inb %w1, %b0;\n\t"
: "=a"(ret)
: "Nd"(port));
return ret;
}
static ALWAYS_INLINE
void sys_out16(u16_t data, io_port_t port)
{
__asm__ volatile("outw %w0, %w1;\n\t"
:
: "a"(data), "Nd"(port));
}
static ALWAYS_INLINE
u16_t sys_in16(io_port_t port)
{
u16_t ret;
__asm__ volatile("inw %w1, %w0;\n\t"
: "=a"(ret)
: "Nd"(port));
return ret;
}
static ALWAYS_INLINE
void sys_out32(u32_t data, io_port_t port)
{
__asm__ volatile("outl %0, %w1;\n\t"
:
: "a"(data), "Nd"(port));
}
static ALWAYS_INLINE
u32_t sys_in32(io_port_t port)
{
u32_t ret;
__asm__ volatile("inl %w1, %0;\n\t"
: "=a"(ret)
: "Nd"(port));
return ret;
}
static ALWAYS_INLINE
void sys_io_set_bit(io_port_t port, unsigned int bit)
{
u32_t reg = 0;
__asm__ volatile("inl %w1, %0;\n\t"
"btsl %2, %0;\n\t"
"outl %0, %w1;\n\t"
:
: "a" (reg), "Nd" (port), "Ir" (bit));
}
static ALWAYS_INLINE
void sys_io_clear_bit(io_port_t port, unsigned int bit)
{
u32_t reg = 0;
__asm__ volatile("inl %w1, %0;\n\t"
"btrl %2, %0;\n\t"
"outl %0, %w1;\n\t"
:
: "a" (reg), "Nd" (port), "Ir" (bit));
}
static ALWAYS_INLINE
int sys_io_test_bit(io_port_t port, unsigned int bit)
{
u32_t ret;
__asm__ volatile("inl %w1, %0\n\t"
"btl %2, %0\n\t"
: "=a" (ret)
: "Nd" (port), "Ir" (bit));
return (ret & 1U);
}
static ALWAYS_INLINE
int sys_io_test_and_set_bit(io_port_t port, unsigned int bit)
{
int ret;
ret = sys_io_test_bit(port, bit);
sys_io_set_bit(port, bit);
return ret;
}
static ALWAYS_INLINE
int sys_io_test_and_clear_bit(io_port_t port, unsigned int bit)
{
int ret;
ret = sys_io_test_bit(port, bit);
sys_io_clear_bit(port, bit);
return ret;
}
static ALWAYS_INLINE
void sys_write8(u8_t data, mm_reg_t addr)
{
__asm__ volatile("movb %0, %1;\n\t"
:
: "q"(data), "m" (*(volatile u8_t *) addr)
: "memory");
}
static ALWAYS_INLINE
u8_t sys_read8(mm_reg_t addr)
{
u8_t ret;
__asm__ volatile("movb %1, %0;\n\t"
: "=q"(ret)
: "m" (*(volatile u8_t *) addr)
: "memory");
return ret;
}
static ALWAYS_INLINE
void sys_write16(u16_t data, mm_reg_t addr)
{
__asm__ volatile("movw %0, %1;\n\t"
:
: "r"(data), "m" (*(volatile u16_t *) addr)
: "memory");
}
static ALWAYS_INLINE
u16_t sys_read16(mm_reg_t addr)
{
u16_t ret;
__asm__ volatile("movw %1, %0;\n\t"
: "=r"(ret)
: "m" (*(volatile u16_t *) addr)
: "memory");
return ret;
}
static ALWAYS_INLINE
void sys_write32(u32_t data, mm_reg_t addr)
{
__asm__ volatile("movl %0, %1;\n\t"
:
: "r"(data), "m" (*(volatile u32_t *) addr)
: "memory");
}
static ALWAYS_INLINE
u32_t sys_read32(mm_reg_t addr)
{
u32_t ret;
__asm__ volatile("movl %1, %0;\n\t"
: "=r"(ret)
: "m" (*(volatile u32_t *) addr)
: "memory");
return ret;
}
static ALWAYS_INLINE
void sys_set_bit(mem_addr_t addr, unsigned int bit)
{
__asm__ volatile("btsl %1, %0;\n\t"
: "+m" (*(volatile u32_t *) (addr))
: "Ir" (bit)
: "memory");
}
static ALWAYS_INLINE
void sys_clear_bit(mem_addr_t addr, unsigned int bit)
{
__asm__ volatile("btrl %1, %0;\n\t"
: "+m" (*(volatile u32_t *) (addr))
: "Ir" (bit));
}
static ALWAYS_INLINE
int sys_test_bit(mem_addr_t addr, unsigned int bit)
{
int ret;
__asm__ volatile("btl %2, %1;\n\t"
"sbb %0, %0\n\t"
: "=r" (ret), "+m" (*(volatile u32_t *) (addr))
: "Ir" (bit));
return ret;
}
static ALWAYS_INLINE
int sys_test_and_set_bit(mem_addr_t addr, unsigned int bit)
{
int ret;
__asm__ volatile("btsl %2, %1;\n\t"
"sbb %0, %0\n\t"
: "=r" (ret), "+m" (*(volatile u32_t *) (addr))
: "Ir" (bit));
return ret;
}
static ALWAYS_INLINE
int sys_test_and_clear_bit(mem_addr_t addr, unsigned int bit)
{
int ret;
__asm__ volatile("btrl %2, %1;\n\t"
"sbb %0, %0\n\t"
: "=r" (ret), "+m" (*(volatile u32_t *) (addr))
: "Ir" (bit));
return ret;
}
#define sys_bitfield_set_bit sys_set_bit
#define sys_bitfield_clear_bit sys_clear_bit
#define sys_bitfield_test_bit sys_test_bit
#define sys_bitfield_test_and_set_bit sys_test_and_set_bit
#define sys_bitfield_test_and_clear_bit sys_test_and_clear_bit
#endif /* _ASMLANGUAGE */
#ifdef __cplusplus
}
#endif
#endif /* ZEPHYR_INCLUDE_ARCH_X86_ASM_INLINE_GCC_H_ */