zephyr/drivers/clock_control/clock_stm32_ll_wba.c

619 lines
16 KiB
C

/*
* Copyright (c) 2023 STMicroelectronics
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <soc.h>
#include <stm32_ll_bus.h>
#include <stm32_ll_pwr.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_system.h>
#include <stm32_ll_utils.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/sys/util.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include "stm32_hsem.h"
/* Macros to fill up prescaler values */
#define fn_ahb_prescaler(v) LL_RCC_SYSCLK_DIV_ ## v
#define ahb_prescaler(v) fn_ahb_prescaler(v)
#define fn_ahb5_prescaler(v) LL_RCC_AHB5_DIV_ ## v
#define ahb5_prescaler(v) fn_ahb5_prescaler(v)
#define fn_apb1_prescaler(v) LL_RCC_APB1_DIV_ ## v
#define apb1_prescaler(v) fn_apb1_prescaler(v)
#define fn_apb2_prescaler(v) LL_RCC_APB2_DIV_ ## v
#define apb2_prescaler(v) fn_apb2_prescaler(v)
#define fn_apb7_prescaler(v) LL_RCC_APB7_DIV_ ## v
#define apb7_prescaler(v) fn_apb7_prescaler(v)
#define RCC_CALC_FLASH_FREQ __LL_RCC_CALC_HCLK_FREQ
#define GET_CURRENT_FLASH_PRESCALER LL_RCC_GetAHBPrescaler
static uint32_t get_bus_clock(uint32_t clock, uint32_t prescaler)
{
return clock / prescaler;
}
/** @brief Verifies clock is part of active clock configuration */
__unused
static int enabled_clock(uint32_t src_clk)
{
if ((src_clk == STM32_SRC_SYSCLK) ||
((src_clk == STM32_SRC_HSE) && IS_ENABLED(STM32_HSE_ENABLED)) ||
((src_clk == STM32_SRC_HSI16) && IS_ENABLED(STM32_HSI_ENABLED)) ||
((src_clk == STM32_SRC_LSE) && IS_ENABLED(STM32_LSE_ENABLED)) ||
((src_clk == STM32_SRC_LSI) && IS_ENABLED(STM32_LSI_ENABLED)) ||
((src_clk == STM32_SRC_PLL1_P) && IS_ENABLED(STM32_PLL_P_ENABLED)) ||
((src_clk == STM32_SRC_PLL1_Q) && IS_ENABLED(STM32_PLL_Q_ENABLED)) ||
((src_clk == STM32_SRC_PLL1_R) && IS_ENABLED(STM32_PLL_R_ENABLED))) {
return 0;
}
return -ENOTSUP;
}
static inline int stm32_clock_control_on(const struct device *dev,
clock_control_subsys_t sub_system)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
volatile int temp;
ARG_UNUSED(dev);
if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) {
/* Attempt to toggle a wrong periph clock bit */
return -ENOTSUP;
}
sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus,
pclken->enr);
/* Delay after enabling the clock, to allow it to become active */
temp = sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus);
UNUSED(temp);
return 0;
}
static inline int stm32_clock_control_off(const struct device *dev,
clock_control_subsys_t sub_system)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
ARG_UNUSED(dev);
if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) {
/* Attempt to toggle a wrong periph clock bit */
return -ENOTSUP;
}
sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus,
pclken->enr);
return 0;
}
static inline int stm32_clock_control_configure(const struct device *dev,
clock_control_subsys_t sub_system,
void *data)
{
#if defined(STM32_SRC_CLOCK_MIN)
/* At least one alt src clock available */
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
int err;
ARG_UNUSED(dev);
ARG_UNUSED(data);
err = enabled_clock(pclken->bus);
if (err < 0) {
/* Attempt to configure a src clock not available or not valid */
return err;
}
sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr),
STM32_CLOCK_MASK_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr));
sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr),
STM32_CLOCK_VAL_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr));
return 0;
#else
/* No src clock available: Not supported */
return -ENOTSUP;
#endif
}
__unused
static uint32_t get_pllsrc_frequency(void)
{
if (IS_ENABLED(STM32_PLL_SRC_HSI)) {
return STM32_HSI_FREQ;
} else if (IS_ENABLED(STM32_PLL_SRC_HSE)) {
return STM32_HSE_FREQ;
}
__ASSERT(0, "No PLL Source configured");
return 0;
}
__unused
static uint32_t get_pllsrc(void)
{
if (IS_ENABLED(STM32_PLL_SRC_HSI)) {
return LL_RCC_PLL1SOURCE_HSI;
} else if (IS_ENABLED(STM32_PLL_SRC_HSE)) {
return LL_RCC_PLL1SOURCE_HSE;
}
__ASSERT(0, "No PLL Source configured");
return 0;
}
static int stm32_clock_control_get_subsys_rate(const struct device *dev,
clock_control_subsys_t sub_system,
uint32_t *rate)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
/*
* Get AHB Clock (= SystemCoreClock = SYSCLK/prescaler)
* SystemCoreClock is preferred to CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC
* since it will be updated after clock configuration and hence
* more likely to contain actual clock speed
*/
uint32_t ahb_clock = SystemCoreClock;
uint32_t apb1_clock = get_bus_clock(ahb_clock, STM32_APB1_PRESCALER);
uint32_t apb2_clock = get_bus_clock(ahb_clock, STM32_APB2_PRESCALER);
uint32_t apb7_clock = get_bus_clock(ahb_clock, STM32_APB7_PRESCALER);
uint32_t ahb5_clock;
ARG_UNUSED(dev);
if (IS_ENABLED(STM32_SYSCLK_SRC_PLL)) {
/* PLL is the SYSCLK source, use 'ahb5-prescaler' */
ahb5_clock = get_bus_clock(ahb_clock * STM32_AHB_PRESCALER,
STM32_AHB5_PRESCALER);
} else {
/* PLL is not the SYSCLK source, use 'ahb5-div'(if set) */
if (IS_ENABLED(STM32_AHB5_DIV)) {
ahb5_clock = ahb_clock * STM32_AHB_PRESCALER / 2;
} else {
ahb5_clock = ahb_clock * STM32_AHB_PRESCALER;
}
}
__ASSERT(ahb5_clock <= MHZ(32), "AHB5 clock frequency exceeds 32 MHz");
switch (pclken->bus) {
case STM32_CLOCK_BUS_AHB1:
case STM32_CLOCK_BUS_AHB2:
case STM32_CLOCK_BUS_AHB4:
*rate = ahb_clock;
break;
case STM32_CLOCK_BUS_AHB5:
*rate = ahb5_clock;
break;
case STM32_CLOCK_BUS_APB1:
case STM32_CLOCK_BUS_APB1_2:
*rate = apb1_clock;
break;
case STM32_CLOCK_BUS_APB2:
*rate = apb2_clock;
break;
case STM32_CLOCK_BUS_APB7:
*rate = apb7_clock;
break;
case STM32_SRC_SYSCLK:
*rate = SystemCoreClock * STM32_CORE_PRESCALER;
break;
#if defined(STM32_PLL_ENABLED)
case STM32_SRC_PLL1_P:
*rate = __LL_RCC_CALC_PLL1PCLK_FREQ(get_pllsrc_frequency(),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_P_DIVISOR);
break;
case STM32_SRC_PLL1_Q:
*rate = __LL_RCC_CALC_PLL1QCLK_FREQ(get_pllsrc_frequency(),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_Q_DIVISOR);
break;
case STM32_SRC_PLL1_R:
*rate = __LL_RCC_CALC_PLL1RCLK_FREQ(get_pllsrc_frequency(),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_R_DIVISOR);
break;
#endif /* STM32_PLL_ENABLED */
#if defined(STM32_LSE_ENABLED)
case STM32_SRC_LSE:
*rate = STM32_LSE_FREQ;
break;
#endif
#if defined(STM32_LSI_ENABLED)
case STM32_SRC_LSI:
*rate = STM32_LSI_FREQ;
break;
#endif
#if defined(STM32_HSI_ENABLED)
case STM32_SRC_HSI16:
*rate = STM32_HSI_FREQ;
break;
#endif
#if defined(STM32_HSE_ENABLED)
case STM32_SRC_HSE:
if (IS_ENABLED(STM32_HSE_DIV2)) {
*rate = STM32_HSE_FREQ / 2;
} else {
*rate = STM32_HSE_FREQ;
}
break;
#endif
default:
return -ENOTSUP;
}
return 0;
}
static enum clock_control_status stm32_clock_control_get_status(const struct device *dev,
clock_control_subsys_t sub_system)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)sub_system;
ARG_UNUSED(dev);
if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == true) {
/* Gated clocks */
if ((sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus) & pclken->enr)
== pclken->enr) {
return CLOCK_CONTROL_STATUS_ON;
} else {
return CLOCK_CONTROL_STATUS_OFF;
}
} else {
/* Domain clock sources */
if (enabled_clock(pclken->bus) == 0) {
return CLOCK_CONTROL_STATUS_ON;
} else {
return CLOCK_CONTROL_STATUS_OFF;
}
}
}
static const struct clock_control_driver_api stm32_clock_control_api = {
.on = stm32_clock_control_on,
.off = stm32_clock_control_off,
.get_rate = stm32_clock_control_get_subsys_rate,
.get_status = stm32_clock_control_get_status,
.configure = stm32_clock_control_configure,
};
__unused
static int get_vco_input_range(uint32_t m_div, uint32_t *range)
{
uint32_t vco_freq;
vco_freq = get_pllsrc_frequency() / m_div;
if (MHZ(4) <= vco_freq && vco_freq <= MHZ(8)) {
*range = LL_RCC_PLLINPUTRANGE_4_8;
} else if (MHZ(8) < vco_freq && vco_freq <= MHZ(16)) {
*range = LL_RCC_PLLINPUTRANGE_8_16;
} else {
return -ERANGE;
}
return 0;
}
static void set_regu_voltage(uint32_t hclk_freq)
{
if (hclk_freq <= MHZ(16)) {
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE2);
} else {
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1);
}
while (LL_PWR_IsActiveFlag_VOS() == 0) {
}
}
/*
* Unconditionally switch the system clock source to HSI.
*/
__unused
static void stm32_clock_switch_to_hsi(void)
{
/* Enable HSI if not enabled */
if (LL_RCC_HSI_IsReady() != 1) {
/* Enable HSI */
LL_RCC_HSI_Enable();
while (LL_RCC_HSI_IsReady() != 1) {
/* Wait for HSI ready */
}
}
/* Set HSI as SYSCLCK source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) {
}
/* Erratum 2.2.4: Spurious deactivation of HSE when HSI is selected as
* system clock source
* Re-enable HSE clock if required after switch source to HSI
*/
if (IS_ENABLED(STM32_HSE_ENABLED)) {
if (IS_ENABLED(STM32_HSE_DIV2)) {
LL_RCC_HSE_EnablePrescaler();
}
/* Enable HSE */
LL_RCC_HSE_Enable();
while (LL_RCC_HSE_IsReady() != 1) {
/* Wait for HSE ready */
}
}
}
__unused
static int set_up_plls(void)
{
#if defined(STM32_PLL_ENABLED)
int r;
uint32_t vco_input_range;
LL_RCC_PLL1_Disable();
/* Configure PLL source */
/* Can be HSE, HSI */
if (IS_ENABLED(STM32_PLL_SRC_HSE)) {
/* Main PLL configuration and activation */
LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_HSE);
} else if (IS_ENABLED(STM32_PLL_SRC_HSI)) {
/* Main PLL configuration and activation */
LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_HSI);
} else {
return -ENOTSUP;
}
r = get_vco_input_range(STM32_PLL_M_DIVISOR, &vco_input_range);
if (r < 0) {
return r;
}
LL_RCC_PLL1_SetDivider(STM32_PLL_M_DIVISOR);
LL_RCC_PLL1_SetVCOInputRange(vco_input_range);
LL_RCC_PLL1_SetN(STM32_PLL_N_MULTIPLIER);
LL_RCC_PLL1FRACN_Disable();
if (IS_ENABLED(STM32_PLL_P_ENABLED)) {
LL_RCC_PLL1_SetP(STM32_PLL_P_DIVISOR);
LL_RCC_PLL1_EnableDomain_PLL1P();
}
if (IS_ENABLED(STM32_PLL_Q_ENABLED)) {
LL_RCC_PLL1_SetQ(STM32_PLL_Q_DIVISOR);
LL_RCC_PLL1_EnableDomain_PLL1Q();
}
if (IS_ENABLED(STM32_PLL_R_ENABLED)) {
LL_RCC_PLL1_SetR(STM32_PLL_R_DIVISOR);
LL_RCC_PLL1_EnableDomain_PLL1R();
}
/* Enable PLL */
LL_RCC_PLL1_Enable();
while (LL_RCC_PLL1_IsReady() != 1U) {
/* Wait for PLL ready */
}
#else
/* Init PLL source to None */
LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_NONE);
#endif /* STM32_PLL_ENABLED */
return 0;
}
static void set_up_fixed_clock_sources(void)
{
if (IS_ENABLED(STM32_HSE_ENABLED)) {
if (IS_ENABLED(STM32_HSE_DIV2)) {
LL_RCC_HSE_EnablePrescaler();
}
/* Enable HSE */
LL_RCC_HSE_Enable();
while (LL_RCC_HSE_IsReady() != 1) {
/* Wait for HSE ready */
}
}
if (IS_ENABLED(STM32_HSI_ENABLED)) {
/* Enable HSI if not enabled */
if (LL_RCC_HSI_IsReady() != 1) {
/* Enable HSI */
LL_RCC_HSI_Enable();
while (LL_RCC_HSI_IsReady() != 1) {
/* Wait for HSI ready */
}
}
}
if (IS_ENABLED(STM32_LSI_ENABLED)) {
/* LSI belongs to the back-up domain, enable access.*/
/* Set the DBP bit in the Power control register 1 (PWR_CR1) */
LL_PWR_EnableBkUpAccess();
while (!LL_PWR_IsEnabledBkUpAccess()) {
/* Wait for Backup domain access */
}
LL_RCC_LSI1_Enable();
while (LL_RCC_LSI1_IsReady() != 1) {
}
LL_PWR_DisableBkUpAccess();
}
if (IS_ENABLED(STM32_LSE_ENABLED)) {
/* LSE belongs to the back-up domain, enable access.*/
/* Set the DBP bit in the Power control register 1 (PWR_CR1) */
LL_PWR_EnableBkUpAccess();
while (!LL_PWR_IsEnabledBkUpAccess()) {
/* Wait for Backup domain access */
}
/* Configure driving capability */
LL_RCC_LSE_SetDriveCapability(STM32_LSE_DRIVING << RCC_BDCR1_LSEDRV_Pos);
/* Enable LSE Oscillator (32.768 kHz) */
LL_RCC_LSE_Enable();
while (!LL_RCC_LSE_IsReady()) {
/* Wait for LSE ready */
}
/* Enable LSESYS additionally */
LL_RCC_LSE_EnablePropagation();
/* Wait till LSESYS is ready */
while (!LL_RCC_LSE_IsPropagationReady()) {
}
}
}
/**
* @brief Initialize clocks for the stm32
*
* This routine is called to enable and configure the clocks and PLL
* of the soc on the board. It depends on the board definition.
* This function is called on the startup and also to restore the config
* when exiting for low power mode.
*
* @param dev clock device struct
*
* @return 0
*/
int stm32_clock_control_init(const struct device *dev)
{
uint32_t old_flash_freq;
int r;
ARG_UNUSED(dev);
if (IS_ENABLED(STM32_SYSCLK_SRC_PLL) &&
(LL_RCC_GetSysClkSource() == LL_RCC_SYS_CLKSOURCE_STATUS_PLL1R)) {
/* In case of chainloaded application, it may happen that PLL
* was already configured as sysclk src by bootloader.
* Don't test other cases as there are multiple options but
* they will be handled smoothly by the function.
*/
SystemCoreClock = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
return 0;
}
old_flash_freq = RCC_CALC_FLASH_FREQ(HAL_RCC_GetSysClockFreq(),
GET_CURRENT_FLASH_PRESCALER());
/* Set up individual enabled clocks */
set_up_fixed_clock_sources();
/* Set voltage regulator to comply with targeted system frequency */
set_regu_voltage(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);
/* If required, apply max step freq for Sysclock w/ PLL input */
if (IS_ENABLED(STM32_SYSCLK_SRC_PLL)) {
LL_RCC_PLL1_SetPLL1RCLKDivisionStep(LL_RCC_PLL1RCLK_2_STEP_DIV);
/* Send 2 pulses on CLKPRE like it is done in STM32Cube HAL */
LL_RCC_PLL1_DisablePLL1RCLKDivision();
LL_RCC_PLL1_EnablePLL1RCLKDivision();
LL_RCC_PLL1_DisablePLL1RCLKDivision();
LL_RCC_PLL1_EnablePLL1RCLKDivision();
}
/* Set up PLLs */
r = set_up_plls();
if (r < 0) {
return r;
}
/* If freq increases, set flash latency before any clock setting */
if (old_flash_freq < CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) {
LL_SetFlashLatency(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);
}
LL_RCC_SetAHBPrescaler(ahb_prescaler(STM32_CORE_PRESCALER));
if (IS_ENABLED(STM32_SYSCLK_SRC_PLL)) {
/* PLL is the SYSCLK source, use 'ahb5-prescaler' */
LL_RCC_SetAHB5Prescaler(ahb5_prescaler(STM32_AHB5_PRESCALER));
} else {
/* PLL is not the SYSCLK source, use 'ahb5-div'(if set) */
if (IS_ENABLED(STM32_AHB5_DIV)) {
LL_RCC_SetAHB5Divider(LL_RCC_AHB5_DIVIDER_2);
} else {
LL_RCC_SetAHB5Divider(LL_RCC_AHB5_DIVIDER_1);
}
}
if (IS_ENABLED(STM32_SYSCLK_SRC_PLL)) {
/* Set PLL as System Clock Source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL1R);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL1R) {
}
LL_RCC_PLL1_DisablePLL1RCLKDivision();
while (LL_RCC_PLL1_IsPLL1RCLKDivisionReady() == 0) {
}
} else if (IS_ENABLED(STM32_SYSCLK_SRC_HSE)) {
/* Set HSE as SYSCLCK source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSE);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSE) {
}
} else if (IS_ENABLED(STM32_SYSCLK_SRC_HSI)) {
stm32_clock_switch_to_hsi();
}
/* If freq not increased, set flash latency after all clock setting */
if (old_flash_freq >= CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) {
LL_SetFlashLatency(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);
}
/* Set voltage regulator to comply with targeted system frequency */
set_regu_voltage(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);
SystemCoreClock = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
/* Set bus prescalers prescaler */
LL_RCC_SetAPB1Prescaler(apb1_prescaler(STM32_APB1_PRESCALER));
LL_RCC_SetAPB2Prescaler(apb2_prescaler(STM32_APB2_PRESCALER));
LL_RCC_SetAPB7Prescaler(apb7_prescaler(STM32_APB7_PRESCALER));
return 0;
}
/**
* @brief RCC device, note that priority is intentionally set to 1 so
* that the device init runs just after SOC init
*/
DEVICE_DT_DEFINE(DT_NODELABEL(rcc),
stm32_clock_control_init,
NULL,
NULL, NULL,
PRE_KERNEL_1,
CONFIG_CLOCK_CONTROL_INIT_PRIORITY,
&stm32_clock_control_api);