zephyr/drivers/crypto/crypto_ataes132a.c

905 lines
23 KiB
C

/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <init.h>
#include <kernel.h>
#include <string.h>
#include <device.h>
#include <drivers/i2c.h>
#include <sys/__assert.h>
#include <crypto/cipher.h>
#include "crypto_ataes132a_priv.h"
#define D10D24S 11
#define MAX_RETRIES 3
#define ATAES132A_AES_KEY_SIZE 16
/* ATAES132A can store up to 16 different crypto keys */
#define CRYPTO_MAX_SESSION 16
#define LOG_LEVEL CONFIG_CRYPTO_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(ataes132a);
static struct ataes132a_driver_state ataes132a_state[CRYPTO_MAX_SESSION];
static void ataes132a_init_states(void)
{
int i;
for (i = 0; i < ATAES132A_AES_KEY_SIZE; i++) {
ataes132a_state[i].in_use = false;
ataes132a_state[i].key_id = i;
}
}
static int ataes132a_send_command(const struct device *dev, uint8_t opcode,
uint8_t mode, uint8_t *params,
uint8_t nparams, uint8_t *response,
uint8_t *nresponse)
{
int retry_count = 0;
struct ataes132a_device_data *data = dev->data;
const struct ataes132a_device_config *cfg = dev->config;
uint8_t count;
uint8_t status;
uint8_t crc[2];
int i, i2c_return;
count = nparams + 5;
if (count > 64) {
LOG_ERR("command too large for command buffer");
return -EDOM;
}
/* If there is a command in progress, idle wait until it is available.
* If there is concurrency protection around the driver, this should
* never happen.
*/
read_reg_i2c(data->i2c, cfg->i2c_addr, ATAES_STATUS_REG, &status);
while (status & ATAES_STATUS_WIP) {
k_busy_wait(D10D24S);
read_reg_i2c(data->i2c, cfg->i2c_addr,
ATAES_STATUS_REG, &status);
}
data->command_buffer[0] = count;
data->command_buffer[1] = opcode;
data->command_buffer[2] = mode;
for (i = 0; i < nparams; i++) {
data->command_buffer[i + 3] = params[i];
}
/*Calculate command CRC*/
ataes132a_atmel_crc(data->command_buffer, nparams + 3, crc);
data->command_buffer[nparams + 3] = crc[0];
data->command_buffer[nparams + 4] = crc[1];
/*Reset i/O address start before sending a command*/
write_reg_i2c(data->i2c, cfg->i2c_addr,
ATAES_COMMAND_ADDRR_RESET, 0x0);
/*Send a command through the command buffer*/
i2c_return = burst_write_i2c(data->i2c, cfg->i2c_addr,
ATAES_COMMAND_MEM_ADDR,
data->command_buffer, count);
LOG_DBG("BURST WRITE RETURN: %d", i2c_return);
/* Idle-waiting for the command completion*/
do {
k_busy_wait(D10D24S);
read_reg_i2c(data->i2c, cfg->i2c_addr,
ATAES_STATUS_REG, &status);
} while (status & ATAES_STATUS_WIP);
if (status & ATAES_STATUS_CRC) {
LOG_ERR("incorrect CRC command");
return -EINVAL;
}
if (!(status & ATAES_STATUS_RDY)) {
LOG_ERR("expected response is not in place");
return -EINVAL;
}
/* Read the response */
burst_read_i2c(data->i2c, cfg->i2c_addr,
ATAES_COMMAND_MEM_ADDR,
data->command_buffer, 64);
count = data->command_buffer[0];
/* Calculate and validate response CRC */
ataes132a_atmel_crc(data->command_buffer, count - 2, crc);
LOG_DBG("COMMAND CRC %x%x", data->command_buffer[count - 2],
data->command_buffer[count - 1]);
LOG_DBG("CALCULATED CRC %x%x", crc[0], crc[1]);
/* If CRC fails retry reading MAX RETRIES times */
while (crc[0] != data->command_buffer[count - 2] ||
crc[1] != data->command_buffer[count - 1]) {
if (retry_count > MAX_RETRIES - 1) {
LOG_ERR("response crc validation rebase"
" max retries");
return -EINVAL;
}
burst_read_i2c(data->i2c, cfg->i2c_addr,
ATAES_COMMAND_MEM_ADDR,
data->command_buffer, 64);
count = data->command_buffer[0];
ataes132a_atmel_crc(data->command_buffer, count - 2, crc);
retry_count++;
LOG_DBG("COMMAND RETRY %d", retry_count);
LOG_DBG("COMMAND CRC %x%x",
data->command_buffer[count - 2],
data->command_buffer[count - 1]);
LOG_DBG("CALCULATED CRC %x%x", crc[0], crc[1]);
}
if ((status & ATAES_STATUS_ERR) || data->command_buffer[1] != 0x00) {
LOG_ERR("command execution error %x",
data->command_buffer[1]);
return -EIO;
}
LOG_DBG("Read the response count: %d", count);
for (i = 0; i < count - 3; i++) {
response[i] = data->command_buffer[i + 1];
}
*nresponse = count - 3;
return 0;
}
int ataes132a_init(const struct device *dev)
{
struct ataes132a_device_data *ataes132a = dev->data;
const struct ataes132a_device_config *cfg = dev->config;
uint32_t i2c_cfg;
LOG_DBG("ATAES132A INIT");
ataes132a->i2c = device_get_binding((char *)cfg->i2c_port);
if (!ataes132a->i2c) {
LOG_DBG("ATAE132A master controller not found!");
return -EINVAL;
}
i2c_cfg = I2C_MODE_MASTER | I2C_SPEED_SET(ATAES132A_BUS_SPEED);
i2c_configure(ataes132a->i2c, i2c_cfg);
k_sem_init(&ataes132a->device_sem, 1, K_SEM_MAX_LIMIT);
ataes132a_init_states();
return 0;
}
int ataes132a_aes_ccm_decrypt(const struct device *dev,
uint8_t key_id,
struct ataes132a_mac_mode *mac_mode,
struct ataes132a_mac_packet *mac_packet,
struct cipher_aead_pkt *aead_op,
uint8_t *nonce_buf)
{
uint8_t command_mode = 0x0;
struct ataes132a_device_data *data = dev->data;
uint8_t out_len;
uint8_t in_buf_len;
uint8_t return_code;
uint8_t expected_out_len;
uint8_t param_buffer[52];
if (!aead_op) {
LOG_ERR("Parameter cannot be null");
return -EINVAL;
}
if (!aead_op->pkt) {
LOG_ERR("Parameter cannot be null");
return -EINVAL;
}
in_buf_len = aead_op->pkt->in_len;
expected_out_len = aead_op->pkt->out_len;
/*The KeyConfig[EKeyID].ExternalCrypto bit must be 1b.*/
if (!(ataes132a_state[key_id].key_config & ATAES_KEYCONFIG_EXTERNAL)) {
LOG_ERR("key %x external mode disabled", key_id);
return -EINVAL;
}
if (in_buf_len != 16U && in_buf_len != 32U) {
LOG_ERR("ccm mode only accepts input blocks of 16"
" and 32 bytes");
return -EINVAL;
}
if (expected_out_len > 32) {
LOG_ERR("ccm mode cannot generate more than"
" 32 output bytes");
return -EINVAL;
}
/* If KeyConfig[key_id].AuthKey is set, then prior authentication
* is required
*/
if (!(ataes132a_state[key_id].key_config & ATAES_KEYCONFIG_AUTHKEY)) {
LOG_DBG("keep in mind key %x will require"
" previous authentication", key_id);
}
if (!aead_op->pkt->in_buf || !aead_op->pkt->out_buf) {
return 0;
}
/* If the KeyConfig[EKeyID].RandomNonce bit is set
* the current nonce register content will be used.
* If there is an invalid random nonce or if there
* is no nonce synchronization between device
* the decrypt operation will fail accordingly.
*/
if (ataes132a_state[key_id].key_config & ATAES_KEYCONFIG_RAND_NONCE) {
LOG_DBG("key %x requires random nonce,"
" nonce_buf will be ignored", key_id);
LOG_DBG("current nonce register will be used");
}
k_sem_take(&data->device_sem, K_FOREVER);
/* If the KeyConfig[EKeyID].RandomNonce bit is not set
* then the nonce send as parameter will be loaded into
* the nonce register.
*/
if (!(ataes132a_state[key_id].key_config & ATAES_KEYCONFIG_RAND_NONCE)
&& nonce_buf) {
param_buffer[0] = 0x0;
param_buffer[1] = 0x0;
param_buffer[2] = 0x0;
param_buffer[3] = 0x0;
memcpy(param_buffer + 4, nonce_buf, 12);
return_code = ataes132a_send_command(dev, ATAES_NONCE_OP,
0x0, param_buffer, 16,
param_buffer, &out_len);
if (return_code != 0U) {
LOG_ERR("nonce command ended with code %d",
return_code);
k_sem_give(&data->device_sem);
return -EINVAL;
}
if (param_buffer[0] != 0U) {
LOG_ERR("nonce command failed with error"
" code %d", param_buffer[0]);
k_sem_give(&data->device_sem);
return -EIO;
}
}
/* If the KeyConfig[EKeyID].RandomNonce bit is not set
* and the nonce send as parameter is a null value,
* the command will use the current nonce register value.
*/
if (!(ataes132a_state[key_id].key_config & ATAES_KEYCONFIG_RAND_NONCE)
&& !nonce_buf) {
LOG_DBG("current nonce register will be used");
}
/* Client decryption mode requires a MAC packet to specify the
* encryption key id and the MAC count of the encryption device
* to synchronize MAC generation
*/
if (mac_packet) {
param_buffer[0] = mac_packet->encryption_key_id;
param_buffer[2] = mac_packet->encryption_mac_count;
} else {
param_buffer[0] = 0x0;
param_buffer[2] = 0x0;
LOG_DBG("normal decryption mode"
" ignores mac_packet parameter");
}
/* Client decryption mode requires a MAC packet to specify
* if MAC counter, serial number and small zone number are
* included in MAC generation.
*/
if (mac_mode) {
if (mac_mode->include_counter) {
LOG_DBG("including usage counter in the MAC: "
"decrypt and encrypt dev must be the same");
command_mode = command_mode | ATAES_MAC_MODE_COUNTER;
}
if (mac_mode->include_serial) {
LOG_DBG("including serial number in the MAC: "
"decrypt and encrypt dev must be the same");
command_mode = command_mode | ATAES_MAC_MODE_SERIAL;
}
if (mac_mode->include_smallzone) {
LOG_DBG("including small zone in the MAC: "
"decrypt and encrypt dev share the "
"first four bytes of their small zone");
command_mode = command_mode | ATAES_MAC_MODE_SMALLZONE;
}
}
param_buffer[1] = key_id;
param_buffer[3] = expected_out_len;
if (aead_op->tag) {
memcpy(param_buffer + 4, aead_op->tag, 16);
}
memcpy(param_buffer + 20, aead_op->pkt->in_buf, in_buf_len);
return_code = ataes132a_send_command(dev, ATAES_DECRYPT_OP,
command_mode, param_buffer,
in_buf_len + 4, param_buffer,
&out_len);
if (return_code != 0U) {
LOG_ERR("decrypt command ended with code %d", return_code);
k_sem_give(&data->device_sem);
return -EINVAL;
}
if (out_len < 2 || out_len > 33) {
LOG_ERR("decrypt command response has invalid"
" size %d", out_len);
k_sem_give(&data->device_sem);
return -EINVAL;
}
if (param_buffer[0] != 0U) {
LOG_ERR("legacy command failed with error"
" code %d", param_buffer[0]);
k_sem_give(&data->device_sem);
return -param_buffer[0];
}
if (expected_out_len != out_len - 1) {
LOG_ERR("decrypted output data size %d and expected data"
" size %d are different", out_len - 1,
expected_out_len);
k_sem_give(&data->device_sem);
return -EINVAL;
}
memcpy(aead_op->pkt->out_buf, param_buffer + 1, out_len - 1);
k_sem_give(&data->device_sem);
return 0;
}
int ataes132a_aes_ccm_encrypt(const struct device *dev,
uint8_t key_id,
struct ataes132a_mac_mode *mac_mode,
struct cipher_aead_pkt *aead_op,
uint8_t *nonce_buf,
uint8_t *mac_count)
{
uint8_t command_mode = 0x0;
struct ataes132a_device_data *data = dev->data;
uint8_t buf_len;
uint8_t out_len;
uint8_t return_code;
uint8_t param_buffer[40];
if (!aead_op) {
LOG_ERR("Parameter cannot be null");
return -EINVAL;
}
if (!aead_op->pkt) {
LOG_ERR("Parameter cannot be null");
return -EINVAL;
}
buf_len = aead_op->pkt->in_len;
/*The KeyConfig[EKeyID].ExternalCrypto bit must be 1b.*/
if (!(ataes132a_state[key_id].key_config & ATAES_KEYCONFIG_EXTERNAL)) {
LOG_ERR("key %x external mode disabled", key_id);
return -EINVAL;
}
if (buf_len > 32) {
LOG_ERR("only up to 32 bytes accepted for ccm mode");
return -EINVAL;
}
/* If KeyConfig[key_id].AuthKey is set, then prior authentication
* is required
*/
if (!(ataes132a_state[key_id].key_config & ATAES_KEYCONFIG_AUTHKEY)) {
LOG_DBG("keep in mind key %x will require"
" previous authentication", key_id);
}
if (!aead_op->pkt->in_buf || !aead_op->pkt->out_buf) {
return 0;
}
/* If the KeyConfig[EKeyID].RandomNonce bit is set
* the current nonce register content will be used.
* If there is an invalid random nonce or if there
* is no nonce synchronization between device
* the decrypt operation will fail accordingly.
*/
if (ataes132a_state[key_id].key_config & ATAES_KEYCONFIG_RAND_NONCE) {
LOG_DBG("key %x requires random nonce,"
" nonce_buf will be ignored", key_id);
LOG_DBG("current nonce register will be used");
}
k_sem_take(&data->device_sem, K_FOREVER);
/* If the KeyConfig[EKeyID].RandomNonce bit is not set
* then the nonce send as parameter will be loaded into
* the nonce register.
*/
if (!(ataes132a_state[key_id].key_config & ATAES_KEYCONFIG_RAND_NONCE)
&& nonce_buf) {
param_buffer[0] = 0x0;
param_buffer[1] = 0x0;
param_buffer[2] = 0x0;
param_buffer[3] = 0x0;
memcpy(param_buffer + 4, nonce_buf, 12);
return_code = ataes132a_send_command(dev, ATAES_NONCE_OP,
0x0, param_buffer, 16,
param_buffer, &out_len);
if (return_code != 0U) {
LOG_ERR("nonce command ended with code %d",
return_code);
k_sem_give(&data->device_sem);
return -EINVAL;
}
if (param_buffer[0] != 0U) {
LOG_ERR("nonce command failed with error"
" code %d", param_buffer[0]);
k_sem_give(&data->device_sem);
return -EIO;
}
}
/* If the KeyConfig[EKeyID].RandomNonce bit is not set
* and the nonce send as parameter is a null value,
* the command will use the current nonce register value.
*/
if (!(ataes132a_state[key_id].key_config & ATAES_KEYCONFIG_RAND_NONCE)
&& !nonce_buf) {
LOG_DBG("current nonce register will be used");
}
/* MAC packet to specify if MAC counter, serial number and small zone
* number are included in MAC generation.
*/
if (mac_mode) {
if (mac_mode->include_counter) {
LOG_DBG("including usage counter in the MAC: "
"decrypt and encrypt dev must be the same");
command_mode = command_mode | ATAES_MAC_MODE_COUNTER;
}
if (mac_mode->include_serial) {
LOG_DBG("including serial number in the MAC: "
"decrypt and encrypt dev must be the same");
command_mode = command_mode | ATAES_MAC_MODE_SERIAL;
}
if (mac_mode->include_smallzone) {
LOG_DBG("including small zone in the MAC: "
"decrypt and encrypt dev share the "
"first four bytes of their small zone");
command_mode = command_mode | ATAES_MAC_MODE_SMALLZONE;
}
}
param_buffer[0] = key_id;
param_buffer[1] = buf_len;
memcpy(param_buffer + 2, aead_op->pkt->in_buf, buf_len);
return_code = ataes132a_send_command(dev, ATAES_ENCRYPT_OP,
command_mode, param_buffer,
buf_len + 2, param_buffer,
&out_len);
if (return_code != 0U) {
LOG_ERR("encrypt command ended with code %d", return_code);
k_sem_give(&data->device_sem);
return -EINVAL;
}
if (out_len < 33 || out_len > 49) {
LOG_ERR("encrypt command response has invalid"
" size %d", out_len);
k_sem_give(&data->device_sem);
return -EINVAL;
}
if (param_buffer[0] != 0U) {
LOG_ERR("encrypt command failed with error"
" code %d", param_buffer[0]);
k_sem_give(&data->device_sem);
return -EIO;
}
if (aead_op->tag) {
memcpy(aead_op->tag, param_buffer + 1, 16);
}
memcpy(aead_op->pkt->out_buf, param_buffer + 17, out_len - 17U);
if (mac_mode) {
if (mac_mode->include_counter) {
param_buffer[0] = 0x0;
param_buffer[1] = 0x0;
param_buffer[2] = 0x0;
param_buffer[3] = 0x0;
ataes132a_send_command(dev, ATAES_INFO_OP, 0x0,
param_buffer, 4,
param_buffer, &out_len);
if (param_buffer[0] != 0U) {
LOG_ERR("info command failed with error"
" code %d", param_buffer[0]);
k_sem_give(&data->device_sem);
return -EIO;
}
if (mac_count) {
*mac_count = param_buffer[2];
}
}
}
k_sem_give(&data->device_sem);
return 0;
}
int ataes132a_aes_ecb_block(const struct device *dev,
uint8_t key_id,
struct cipher_pkt *pkt)
{
struct ataes132a_device_data *data = dev->data;
uint8_t buf_len;
uint8_t out_len;
uint8_t return_code;
uint8_t param_buffer[19];
if (!pkt) {
LOG_ERR("Parameter cannot be null");
return -EINVAL;
}
buf_len = pkt->in_len;
if (buf_len > 16) {
LOG_ERR("input block cannot be above 16 bytes");
return -EINVAL;
}
/* AES ECB can only be executed if the ChipConfig.LegacyE configuration
* is set to 1 and if KeyConfig[key_id].LegacyOK is set to 1.
*/
if (!(ataes132a_state[key_id].chip_config & ATAES_CHIPCONFIG_LEGACYE)) {
LOG_ERR("legacy mode disabled");
return -EINVAL;
}
if (!(ataes132a_state[key_id].key_config & ATAES_KEYCONFIG_LEGACYOK)) {
LOG_ERR("key %x legacy mode disabled", key_id);
return -EINVAL;
}
LOG_DBG("Chip config: %x", ataes132a_state[key_id].chip_config);
LOG_DBG("Key ID: %d", key_id);
LOG_DBG("Key config: %x", ataes132a_state[key_id].key_config);
/* If KeyConfig[key_id].AuthKey is set, then prior authentication
* is required
*/
if (!(ataes132a_state[key_id].key_config & ATAES_KEYCONFIG_AUTHKEY)) {
LOG_DBG("keep in mind key %x will require"
" previous authentication", key_id);
}
if (!pkt->in_buf || !pkt->out_buf) {
return 0;
}
k_sem_take(&data->device_sem, K_FOREVER);
param_buffer[0] = 0x0;
param_buffer[1] = key_id;
param_buffer[2] = 0x0;
memcpy(param_buffer + 3, pkt->in_buf, buf_len);
(void)memset(param_buffer + 3 + buf_len, 0x0, 16 - buf_len);
return_code = ataes132a_send_command(dev, ATAES_LEGACY_OP, 0x00,
param_buffer, buf_len + 3,
param_buffer, &out_len);
if (return_code != 0U) {
LOG_ERR("legacy command ended with code %d", return_code);
k_sem_give(&data->device_sem);
return -EINVAL;
}
if (out_len != 17U) {
LOG_ERR("legacy command response has invalid"
" size %d", out_len);
k_sem_give(&data->device_sem);
return -EINVAL;
}
if (param_buffer[0] != 0U) {
LOG_ERR("legacy command failed with error"
" code %d", param_buffer[0]);
k_sem_give(&data->device_sem);
return -EIO;
}
memcpy(pkt->out_buf, param_buffer + 1, 16);
k_sem_give(&data->device_sem);
return 0;
}
static int do_ccm_encrypt_mac(struct cipher_ctx *ctx,
struct cipher_aead_pkt *aead_op, uint8_t *nonce)
{
const struct device *dev = ctx->device;
struct ataes132a_driver_state *state = ctx->drv_sessn_state;
struct ataes132a_mac_mode mac_mode;
uint8_t key_id;
key_id = state->key_id;
__ASSERT_NO_MSG(*(uint8_t *)ctx->key.handle == key_id);
/* Removing all this salt from the MAC reduces the protection
* but allows any other crypto implementations to authorize
* the message.
*/
mac_mode.include_counter = false;
mac_mode.include_serial = false;
mac_mode.include_smallzone = false;
if (aead_op->pkt->in_len <= 16 &&
aead_op->pkt->out_buf_max < 16) {
LOG_ERR("Not enough space available in out buffer.");
return -EINVAL;
}
if (aead_op->pkt->in_len > 16 &&
aead_op->pkt->out_buf_max < 32) {
LOG_ERR("Not enough space available in out buffer.");
return -EINVAL;
}
if (aead_op->pkt->in_len <= 16) {
aead_op->pkt->out_len = 16;
} else if (aead_op->pkt->in_len > 16) {
aead_op->pkt->out_len = 32;
}
if (aead_op->ad != NULL || aead_op->ad_len != 0U) {
LOG_ERR("Associated data is not supported.");
return -EINVAL;
}
ataes132a_aes_ccm_encrypt(dev, key_id, &mac_mode,
aead_op, nonce, NULL);
return 0;
}
static int do_ccm_decrypt_auth(struct cipher_ctx *ctx,
struct cipher_aead_pkt *aead_op, uint8_t *nonce)
{
const struct device *dev = ctx->device;
struct ataes132a_driver_state *state = ctx->drv_sessn_state;
struct ataes132a_mac_mode mac_mode;
uint8_t key_id;
key_id = state->key_id;
__ASSERT_NO_MSG(*(uint8_t *)ctx->key.handle == key_id);
/* Removing all this salt from the MAC reduces the protection
* but allows any other crypto implementations to authorize
* the message.
*/
mac_mode.include_counter = false;
mac_mode.include_serial = false;
mac_mode.include_smallzone = false;
if (aead_op->pkt->in_len <= 16 &&
aead_op->pkt->out_buf_max < 16) {
LOG_ERR("Not enough space available in out buffer.");
return -EINVAL;
}
if (aead_op->pkt->in_len > 16 &&
aead_op->pkt->out_buf_max < 32) {
LOG_ERR("Not enough space available in out buffer.");
return -EINVAL;
}
aead_op->pkt->ctx = ctx;
if (aead_op->ad != NULL || aead_op->ad_len != 0U) {
LOG_ERR("Associated data is not supported.");
return -EINVAL;
}
/* Normal Decryption Mode will only decrypt host generated packets */
ataes132a_aes_ccm_decrypt(dev, key_id, &mac_mode,
NULL, aead_op, nonce);
return 0;
}
static int do_block(struct cipher_ctx *ctx, struct cipher_pkt *pkt)
{
const struct device *dev = ctx->device;
struct ataes132a_driver_state *state = ctx->drv_sessn_state;
uint8_t key_id;
key_id = state->key_id;
__ASSERT_NO_MSG(*(uint8_t *)ctx->key.handle == key_id);
if (pkt->out_buf_max < 16) {
LOG_ERR("Not enough space available in out buffer.");
return -EINVAL;
}
pkt->out_len = 16;
return ataes132a_aes_ecb_block(dev, key_id, pkt);
}
static int ataes132a_session_free(const struct device *dev,
struct cipher_ctx *session)
{
struct ataes132a_driver_state *state = session->drv_sessn_state;
ARG_UNUSED(dev);
state->in_use = false;
return 0;
}
static int ataes132a_session_setup(const struct device *dev,
struct cipher_ctx *ctx,
enum cipher_algo algo, enum cipher_mode mode,
enum cipher_op op_type)
{
uint8_t key_id = *((uint8_t *)ctx->key.handle);
struct ataes132a_device_data *data = dev->data;
const struct ataes132a_device_config *cfg = dev->config;
uint8_t config;
if (ataes132a_state[key_id].in_use) {
LOG_ERR("Session in progress");
return -EINVAL;
}
if (mode == CRYPTO_CIPHER_MODE_CCM &&
ctx->mode_params.ccm_info.tag_len != 16U) {
LOG_ERR("ATAES132A support 16 byte tag only.");
return -EINVAL;
}
if (mode == CRYPTO_CIPHER_MODE_CCM &&
ctx->mode_params.ccm_info.nonce_len != 12U) {
LOG_ERR("ATAES132A support 12 byte nonce only.");
return -EINVAL;
}
ataes132a_state[key_id].in_use = true;
read_reg_i2c(data->i2c, cfg->i2c_addr,
ATAES_KEYCFG_REG(key_id),
&config);
ataes132a_state[key_id].key_config = config;
read_reg_i2c(data->i2c, cfg->i2c_addr,
ATAES_CHIPCONFIG_REG,
&config);
ataes132a_state[key_id].chip_config = config;
ctx->drv_sessn_state = &ataes132a_state[key_id];
ctx->device = dev;
if (algo != CRYPTO_CIPHER_ALGO_AES) {
LOG_ERR("ATAES132A unsupported algorithm");
return -EINVAL;
}
/*ATAES132A support I2C polling only*/
if (!(ctx->flags & CAP_SYNC_OPS)) {
LOG_ERR("Async not supported by this driver");
return -EINVAL;
}
if (ctx->keylen != ATAES132A_AES_KEY_SIZE) {
LOG_ERR("ATAES132A unsupported key size");
return -EINVAL;
}
if (op_type == CRYPTO_CIPHER_OP_ENCRYPT) {
switch (mode) {
case CRYPTO_CIPHER_MODE_ECB:
ctx->ops.block_crypt_hndlr = do_block;
break;
case CRYPTO_CIPHER_MODE_CCM:
ctx->ops.ccm_crypt_hndlr = do_ccm_encrypt_mac;
break;
default:
LOG_ERR("ATAES132A unsupported mode");
return -EINVAL;
}
} else {
switch (mode) {
case CRYPTO_CIPHER_MODE_ECB:
ctx->ops.block_crypt_hndlr = do_block;
break;
case CRYPTO_CIPHER_MODE_CCM:
ctx->ops.ccm_crypt_hndlr = do_ccm_decrypt_auth;
break;
default:
LOG_ERR("ATAES132A unsupported mode");
return -EINVAL;
}
}
ctx->ops.cipher_mode = mode;
return 0;
}
static int ataes132a_query_caps(const struct device *dev)
{
return (CAP_OPAQUE_KEY_HNDL | CAP_SEPARATE_IO_BUFS |
CAP_SYNC_OPS | CAP_AUTONONCE);
}
const struct ataes132a_device_config ataes132a_config = {
.i2c_port = CONFIG_CRYPTO_ATAES132A_I2C_PORT_NAME,
.i2c_addr = CONFIG_CRYPTO_ATAES132A_I2C_ADDR,
.i2c_speed = ATAES132A_BUS_SPEED,
};
static struct crypto_driver_api crypto_enc_funcs = {
.begin_session = ataes132a_session_setup,
.free_session = ataes132a_session_free,
.crypto_async_callback_set = NULL,
.query_hw_caps = ataes132a_query_caps,
};
struct ataes132a_device_data ataes132a_data;
DEVICE_DEFINE(ataes132a, CONFIG_CRYPTO_ATAES132A_DRV_NAME, ataes132a_init,
NULL, &ataes132a_data, &ataes132a_config,
POST_KERNEL, CONFIG_CRYPTO_INIT_PRIORITY,
(void *)&crypto_enc_funcs);