zephyr/drivers/timer/riscv_machine_timer.c

148 lines
3.4 KiB
C

/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <drivers/timer/system_timer.h>
#include <sys_clock.h>
#include <spinlock.h>
#include <soc.h>
#define CYC_PER_TICK ((uint32_t)((uint64_t)sys_clock_hw_cycles_per_sec() \
/ (uint64_t)CONFIG_SYS_CLOCK_TICKS_PER_SEC))
#define MAX_CYC 0xffffffffu
#define MAX_TICKS ((MAX_CYC - CYC_PER_TICK) / CYC_PER_TICK)
#define MIN_DELAY 1000
#define TICKLESS IS_ENABLED(CONFIG_TICKLESS_KERNEL)
static struct k_spinlock lock;
static uint64_t last_count;
static void set_mtimecmp(uint64_t time)
{
#ifdef CONFIG_64BIT
*(volatile uint64_t *)RISCV_MTIMECMP_BASE = time;
#else
volatile uint32_t *r = (uint32_t *)RISCV_MTIMECMP_BASE;
/* Per spec, the RISC-V MTIME/MTIMECMP registers are 64 bit,
* but are NOT internally latched for multiword transfers. So
* we have to be careful about sequencing to avoid triggering
* spurious interrupts: always set the high word to a max
* value first.
*/
r[1] = 0xffffffff;
r[0] = (uint32_t)time;
r[1] = (uint32_t)(time >> 32);
#endif
}
static uint64_t mtime(void)
{
#ifdef CONFIG_64BIT
return *(volatile uint64_t *)RISCV_MTIME_BASE;
#else
volatile uint32_t *r = (uint32_t *)RISCV_MTIME_BASE;
uint32_t lo, hi;
/* Likewise, must guard against rollover when reading */
do {
hi = r[1];
lo = r[0];
} while (r[1] != hi);
return (((uint64_t)hi) << 32) | lo;
#endif
}
static void timer_isr(void *arg)
{
ARG_UNUSED(arg);
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t now = mtime();
uint32_t dticks = (uint32_t)((now - last_count) / CYC_PER_TICK);
last_count += dticks * CYC_PER_TICK;
if (!TICKLESS) {
uint64_t next = last_count + CYC_PER_TICK;
if ((int64_t)(next - now) < MIN_DELAY) {
next += CYC_PER_TICK;
}
set_mtimecmp(next);
}
k_spin_unlock(&lock, key);
z_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL) ? dticks : 1);
}
int z_clock_driver_init(struct device *device)
{
IRQ_CONNECT(RISCV_MACHINE_TIMER_IRQ, 0, timer_isr, NULL, 0);
last_count = mtime();
set_mtimecmp(last_count + CYC_PER_TICK);
irq_enable(RISCV_MACHINE_TIMER_IRQ);
return 0;
}
void z_clock_set_timeout(int32_t ticks, bool idle)
{
ARG_UNUSED(idle);
#if defined(CONFIG_TICKLESS_KERNEL)
/* RISCV has no idle handler yet, so if we try to spin on the
* logic below to reset the comparator, we'll always bump it
* forward to the "next tick" due to MIN_DELAY handling and
* the interrupt will never fire! Just rely on the fact that
* the OS gave us the proper timeout already.
*/
if (idle) {
return;
}
ticks = ticks == K_TICKS_FOREVER ? MAX_TICKS : ticks;
ticks = MAX(MIN(ticks - 1, (int32_t)MAX_TICKS), 0);
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t now = mtime();
uint32_t adj, cyc = ticks * CYC_PER_TICK;
/* Round up to next tick boundary. */
adj = (uint32_t)(now - last_count) + (CYC_PER_TICK - 1);
if (cyc <= MAX_CYC - adj) {
cyc += adj;
} else {
cyc = MAX_CYC;
}
cyc = (cyc / CYC_PER_TICK) * CYC_PER_TICK;
if ((int32_t)(cyc + last_count - now) < MIN_DELAY) {
cyc += CYC_PER_TICK;
}
set_mtimecmp(cyc + last_count);
k_spin_unlock(&lock, key);
#endif
}
uint32_t z_clock_elapsed(void)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return 0;
}
k_spinlock_key_t key = k_spin_lock(&lock);
uint32_t ret = ((uint32_t)mtime() - (uint32_t)last_count) / CYC_PER_TICK;
k_spin_unlock(&lock, key);
return ret;
}
uint32_t z_timer_cycle_get_32(void)
{
return (uint32_t)mtime();
}