zephyr/drivers/flash/soc_flash_nrf.c

587 lines
14 KiB
C

/*
* Copyright (c) 2017-2024 Nordic Semiconductor ASA
* Copyright (c) 2016 Linaro Limited
* Copyright (c) 2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <soc.h>
#include <zephyr/drivers/flash.h>
#include <string.h>
#include <nrfx_nvmc.h>
#include <nrf_erratas.h>
#include "soc_flash_nrf.h"
#define LOG_LEVEL CONFIG_FLASH_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(flash_nrf);
#if DT_NODE_HAS_STATUS(DT_INST(0, nordic_nrf51_flash_controller), okay)
#define DT_DRV_COMPAT nordic_nrf51_flash_controller
#elif DT_NODE_HAS_STATUS(DT_INST(0, nordic_nrf52_flash_controller), okay)
#define DT_DRV_COMPAT nordic_nrf52_flash_controller
#elif DT_NODE_HAS_STATUS(DT_INST(0, nordic_nrf53_flash_controller), okay)
#define DT_DRV_COMPAT nordic_nrf53_flash_controller
#elif DT_NODE_HAS_STATUS(DT_INST(0, nordic_nrf91_flash_controller), okay)
#define DT_DRV_COMPAT nordic_nrf91_flash_controller
#else
#error No matching compatible for soc_flash_nrf.c
#endif
#define SOC_NV_FLASH_NODE DT_INST(0, soc_nv_flash)
#ifndef CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE
#define FLASH_SLOT_WRITE 7500
#if defined(CONFIG_SOC_FLASH_NRF_PARTIAL_ERASE)
#define FLASH_SLOT_ERASE (MAX(CONFIG_SOC_FLASH_NRF_PARTIAL_ERASE_MS * 1000, \
7500))
#else
#define FLASH_SLOT_ERASE FLASH_PAGE_ERASE_MAX_TIME_US
#endif /* CONFIG_SOC_FLASH_NRF_PARTIAL_ERASE */
static int write_op(void *context); /* instance of flash_op_handler_t */
static int write_synchronously(off_t addr, const void *data, size_t len);
static int erase_op(void *context); /* instance of flash_op_handler_t */
static int erase_synchronously(uint32_t addr, uint32_t size);
#endif /* !CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE */
static const struct flash_parameters flash_nrf_parameters = {
#if defined(CONFIG_SOC_FLASH_NRF_EMULATE_ONE_BYTE_WRITE_ACCESS)
.write_block_size = 1,
#else
.write_block_size = 4,
#endif
.erase_value = 0xff,
};
#if defined(CONFIG_MULTITHREADING)
/* semaphore for locking flash resources (tickers) */
static struct k_sem sem_lock;
#define SYNC_INIT() k_sem_init(&sem_lock, 1, 1)
#define SYNC_LOCK() k_sem_take(&sem_lock, K_FOREVER)
#define SYNC_UNLOCK() k_sem_give(&sem_lock)
#else
#define SYNC_INIT()
#define SYNC_LOCK()
#define SYNC_UNLOCK()
#endif
#if NRF52_ERRATA_242_PRESENT
#include <hal/nrf_power.h>
static int suspend_pofwarn(void);
static void restore_pofwarn(void);
#define SUSPEND_POFWARN() suspend_pofwarn()
#define RESUME_POFWARN() restore_pofwarn()
#else
#define SUSPEND_POFWARN() 0
#define RESUME_POFWARN()
#endif /* NRF52_ERRATA_242_PRESENT */
static int write(off_t addr, const void *data, size_t len);
static int erase(uint32_t addr, uint32_t size);
static inline bool is_aligned_32(uint32_t data)
{
return (data & 0x3) ? false : true;
}
static inline bool is_within_bounds(off_t addr, size_t len, off_t boundary_start,
size_t boundary_size)
{
return (addr >= boundary_start &&
(addr < (boundary_start + boundary_size)) &&
(len <= (boundary_start + boundary_size - addr)));
}
static inline bool is_regular_addr_valid(off_t addr, size_t len)
{
return is_within_bounds(addr, len, 0, nrfx_nvmc_flash_size_get());
}
static inline bool is_uicr_addr_valid(off_t addr, size_t len)
{
#ifdef CONFIG_SOC_FLASH_NRF_UICR
return is_within_bounds(addr, len, (off_t)NRF_UICR, sizeof(*NRF_UICR));
#else
return false;
#endif /* CONFIG_SOC_FLASH_NRF_UICR */
}
#if CONFIG_SOC_FLASH_NRF_UICR && IS_ENABLED(NRF91_ERRATA_7_ENABLE_WORKAROUND)
static inline void nrf91_errata_7_enter(void)
{
__disable_irq();
}
static inline void nrf91_errata_7_exit(void)
{
__DSB();
__enable_irq();
}
static void nrf_buffer_read_91_uicr(void *data, off_t addr, size_t len)
{
nrf91_errata_7_enter();
nrf_nvmc_buffer_read(data, (uint32_t)addr, len);
nrf91_errata_7_exit();
}
#endif
static void nvmc_wait_ready(void)
{
while (!nrfx_nvmc_write_done_check()) {
}
}
static int flash_nrf_read(const struct device *dev, off_t addr,
void *data, size_t len)
{
const bool within_uicr = is_uicr_addr_valid(addr, len);
if (is_regular_addr_valid(addr, len)) {
addr += DT_REG_ADDR(SOC_NV_FLASH_NODE);
} else if (!within_uicr) {
LOG_ERR("invalid address: 0x%08lx:%zu",
(unsigned long)addr, len);
return -EINVAL;
}
if (!len) {
return 0;
}
#if CONFIG_SOC_FLASH_NRF_UICR && IS_ENABLED(NRF91_ERRATA_7_ENABLE_WORKAROUND)
if (within_uicr) {
nrf_buffer_read_91_uicr(data, (uint32_t)addr, len);
return 0;
}
#endif
nrf_nvmc_buffer_read(data, (uint32_t)addr, len);
return 0;
}
static int flash_nrf_write(const struct device *dev, off_t addr,
const void *data, size_t len)
{
int ret;
if (is_regular_addr_valid(addr, len)) {
addr += DT_REG_ADDR(SOC_NV_FLASH_NODE);
} else if (!is_uicr_addr_valid(addr, len)) {
LOG_ERR("invalid address: 0x%08lx:%zu",
(unsigned long)addr, len);
return -EINVAL;
}
#if !defined(CONFIG_SOC_FLASH_NRF_EMULATE_ONE_BYTE_WRITE_ACCESS)
if (!is_aligned_32(addr) || (len % sizeof(uint32_t))) {
LOG_ERR("not word-aligned: 0x%08lx:%zu",
(unsigned long)addr, len);
return -EINVAL;
}
#endif
if (!len) {
return 0;
}
SYNC_LOCK();
#ifndef CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE
if (nrf_flash_sync_is_required()) {
ret = write_synchronously(addr, data, len);
} else
#endif /* !CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE */
{
ret = write(addr, data, len);
}
SYNC_UNLOCK();
return ret;
}
static int flash_nrf_erase(const struct device *dev, off_t addr, size_t size)
{
uint32_t pg_size = nrfx_nvmc_flash_page_size_get();
uint32_t n_pages = size / pg_size;
int ret;
if (is_regular_addr_valid(addr, size)) {
/* Erase can only be done per page */
if (((addr % pg_size) != 0) || ((size % pg_size) != 0)) {
LOG_ERR("unaligned address: 0x%08lx:%zu",
(unsigned long)addr, size);
return -EINVAL;
}
if (!n_pages) {
return 0;
}
addr += DT_REG_ADDR(SOC_NV_FLASH_NODE);
#ifdef CONFIG_SOC_FLASH_NRF_UICR
} else if (addr != (off_t)NRF_UICR || size != sizeof(*NRF_UICR)) {
LOG_ERR("invalid address: 0x%08lx:%zu",
(unsigned long)addr, size);
return -EINVAL;
}
#else
} else {
LOG_ERR("invalid address: 0x%08lx:%zu",
(unsigned long)addr, size);
return -EINVAL;
}
#endif /* CONFIG_SOC_FLASH_NRF_UICR */
SYNC_LOCK();
#ifndef CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE
if (nrf_flash_sync_is_required()) {
ret = erase_synchronously(addr, size);
} else
#endif /* !CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE */
{
ret = erase(addr, size);
}
SYNC_UNLOCK();
return ret;
}
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
static struct flash_pages_layout dev_layout;
static void flash_nrf_pages_layout(const struct device *dev,
const struct flash_pages_layout **layout,
size_t *layout_size)
{
*layout = &dev_layout;
*layout_size = 1;
}
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
static const struct flash_parameters *
flash_nrf_get_parameters(const struct device *dev)
{
ARG_UNUSED(dev);
return &flash_nrf_parameters;
}
static const struct flash_driver_api flash_nrf_api = {
.read = flash_nrf_read,
.write = flash_nrf_write,
.erase = flash_nrf_erase,
.get_parameters = flash_nrf_get_parameters,
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
.page_layout = flash_nrf_pages_layout,
#endif
};
static int nrf_flash_init(const struct device *dev)
{
SYNC_INIT();
#ifndef CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE
nrf_flash_sync_init();
#endif /* !CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE */
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
dev_layout.pages_count = nrfx_nvmc_flash_page_count_get();
dev_layout.pages_size = nrfx_nvmc_flash_page_size_get();
#endif
return 0;
}
DEVICE_DT_INST_DEFINE(0, nrf_flash_init, NULL,
NULL, NULL,
POST_KERNEL, CONFIG_FLASH_INIT_PRIORITY,
&flash_nrf_api);
#ifndef CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE
static int erase_synchronously(uint32_t addr, uint32_t size)
{
struct flash_context context = {
.flash_addr = addr,
.len = size,
.enable_time_limit = 1, /* enable time limit */
#if defined(CONFIG_SOC_FLASH_NRF_PARTIAL_ERASE)
.flash_addr_next = addr
#endif
};
struct flash_op_desc flash_op_desc = {
.handler = erase_op,
.context = &context
};
nrf_flash_sync_set_context(FLASH_SLOT_ERASE);
return nrf_flash_sync_exe(&flash_op_desc);
}
static int write_synchronously(off_t addr, const void *data, size_t len)
{
struct flash_context context = {
.data_addr = (uint32_t) data,
.flash_addr = addr,
.len = len,
.enable_time_limit = 1 /* enable time limit */
};
struct flash_op_desc flash_op_desc = {
.handler = write_op,
.context = &context
};
nrf_flash_sync_set_context(FLASH_SLOT_WRITE);
return nrf_flash_sync_exe(&flash_op_desc);
}
#endif /* !CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE */
static int erase_op(void *context)
{
uint32_t pg_size = nrfx_nvmc_flash_page_size_get();
struct flash_context *e_ctx = context;
#ifndef CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE
uint32_t i = 0U;
if (e_ctx->enable_time_limit) {
nrf_flash_sync_get_timestamp_begin();
}
#endif /* !CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE */
#ifdef CONFIG_SOC_FLASH_NRF_UICR
if (e_ctx->flash_addr == (off_t)NRF_UICR) {
if (SUSPEND_POFWARN()) {
return -ECANCELED;
}
(void)nrfx_nvmc_uicr_erase();
RESUME_POFWARN();
return FLASH_OP_DONE;
}
#endif
do {
if (SUSPEND_POFWARN()) {
return -ECANCELED;
}
#if defined(CONFIG_SOC_FLASH_NRF_PARTIAL_ERASE)
if (e_ctx->flash_addr == e_ctx->flash_addr_next) {
nrfx_nvmc_page_partial_erase_init(e_ctx->flash_addr,
CONFIG_SOC_FLASH_NRF_PARTIAL_ERASE_MS);
e_ctx->flash_addr_next += pg_size;
}
if (nrfx_nvmc_page_partial_erase_continue()) {
e_ctx->len -= pg_size;
e_ctx->flash_addr += pg_size;
}
#else
(void)nrfx_nvmc_page_erase(e_ctx->flash_addr);
e_ctx->len -= pg_size;
e_ctx->flash_addr += pg_size;
#endif /* CONFIG_SOC_FLASH_NRF_PARTIAL_ERASE */
RESUME_POFWARN();
#ifndef CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE
i++;
if (e_ctx->enable_time_limit) {
if (nrf_flash_sync_check_time_limit(i)) {
break;
}
}
#endif /* !CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE */
} while (e_ctx->len > 0);
return (e_ctx->len > 0) ? FLASH_OP_ONGOING : FLASH_OP_DONE;
}
static void shift_write_context(uint32_t shift, struct flash_context *w_ctx)
{
w_ctx->flash_addr += shift;
w_ctx->data_addr += shift;
w_ctx->len -= shift;
}
static int write_op(void *context)
{
struct flash_context *w_ctx = context;
#ifndef CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE
uint32_t i = 1U;
if (w_ctx->enable_time_limit) {
nrf_flash_sync_get_timestamp_begin();
}
#endif /* !CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE */
#if defined(CONFIG_SOC_FLASH_NRF_EMULATE_ONE_BYTE_WRITE_ACCESS)
/* If not aligned, write unaligned beginning */
if (!is_aligned_32(w_ctx->flash_addr)) {
uint32_t count = sizeof(uint32_t) - (w_ctx->flash_addr & 0x3);
if (count > w_ctx->len) {
count = w_ctx->len;
}
if (SUSPEND_POFWARN()) {
return -ECANCELED;
}
nrfx_nvmc_bytes_write(w_ctx->flash_addr,
(const void *)w_ctx->data_addr,
count);
RESUME_POFWARN();
shift_write_context(count, w_ctx);
#ifndef CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE
if (w_ctx->enable_time_limit) {
if (nrf_flash_sync_check_time_limit(1)) {
nvmc_wait_ready();
return FLASH_OP_ONGOING;
}
}
#endif /* !CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE */
}
#endif /* CONFIG_SOC_FLASH_NRF_EMULATE_ONE_BYTE_WRITE_ACCESS */
/* Write all the 4-byte aligned data */
while (w_ctx->len >= sizeof(uint32_t)) {
if (SUSPEND_POFWARN()) {
return -ECANCELED;
}
nrfx_nvmc_word_write(w_ctx->flash_addr,
UNALIGNED_GET((uint32_t *)w_ctx->data_addr));
RESUME_POFWARN();
shift_write_context(sizeof(uint32_t), w_ctx);
#ifndef CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE
i++;
if (w_ctx->enable_time_limit) {
if (nrf_flash_sync_check_time_limit(i)) {
nvmc_wait_ready();
return FLASH_OP_ONGOING;
}
}
#endif /* !CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE */
}
#if defined(CONFIG_SOC_FLASH_NRF_EMULATE_ONE_BYTE_WRITE_ACCESS)
/* Write remaining unaligned data */
if (w_ctx->len) {
if (SUSPEND_POFWARN()) {
return -ECANCELED;
}
nrfx_nvmc_bytes_write(w_ctx->flash_addr,
(const void *)w_ctx->data_addr,
w_ctx->len);
RESUME_POFWARN();
shift_write_context(w_ctx->len, w_ctx);
}
#endif /* CONFIG_SOC_FLASH_NRF_EMULATE_ONE_BYTE_WRITE_ACCESS */
nvmc_wait_ready();
return FLASH_OP_DONE;
}
static int erase(uint32_t addr, uint32_t size)
{
struct flash_context context = {
.flash_addr = addr,
.len = size,
#ifndef CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE
.enable_time_limit = 0, /* disable time limit */
#endif /* !CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE */
#if defined(CONFIG_SOC_FLASH_NRF_PARTIAL_ERASE)
.flash_addr_next = addr
#endif
};
return erase_op(&context);
}
static int write(off_t addr, const void *data, size_t len)
{
struct flash_context context = {
.data_addr = (uint32_t) data,
.flash_addr = addr,
.len = len,
#ifndef CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE
.enable_time_limit = 0 /* disable time limit */
#endif /* !CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE */
};
return write_op(&context);
}
#if NRF52_ERRATA_242_PRESENT
/* Disable POFWARN by writing POFCON before a write or erase operation.
* Do not attempt to write or erase if EVENTS_POFWARN is already asserted.
*/
static bool pofcon_enabled;
static int suspend_pofwarn(void)
{
if (!nrf52_errata_242()) {
return 0;
}
bool enabled;
nrf_power_pof_thr_t pof_thr;
pof_thr = nrf_power_pofcon_get(NRF_POWER, &enabled);
if (enabled) {
nrf_power_pofcon_set(NRF_POWER, false, pof_thr);
/* This check need to be reworked once POFWARN event will be
* served by zephyr.
*/
if (nrf_power_event_check(NRF_POWER, NRF_POWER_EVENT_POFWARN)) {
nrf_power_pofcon_set(NRF_POWER, true, pof_thr);
return -ECANCELED;
}
pofcon_enabled = enabled;
}
return 0;
}
static void restore_pofwarn(void)
{
nrf_power_pof_thr_t pof_thr;
if (pofcon_enabled) {
pof_thr = nrf_power_pofcon_get(NRF_POWER, NULL);
nrf_power_pofcon_set(NRF_POWER, true, pof_thr);
pofcon_enabled = false;
}
}
#endif /* NRF52_ERRATA_242_PRESENT */