zephyr/lib/posix/mutex.c

360 lines
7.4 KiB
C

/*
* Copyright (c) 2017 Intel Corporation
* Copyright (c) 2023 Meta
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "posix_internal.h"
#include <zephyr/init.h>
#include <zephyr/kernel.h>
#include <zephyr/logging/log.h>
#include <zephyr/posix/pthread.h>
#include <zephyr/sys/bitarray.h>
LOG_MODULE_REGISTER(pthread_mutex, CONFIG_PTHREAD_MUTEX_LOG_LEVEL);
static struct k_spinlock pthread_mutex_spinlock;
int64_t timespec_to_timeoutms(const struct timespec *abstime);
#define MUTEX_MAX_REC_LOCK 32767
/*
* Default mutex attrs.
*/
static const struct pthread_mutexattr def_attr = {
.type = PTHREAD_MUTEX_DEFAULT,
};
static struct k_mutex posix_mutex_pool[CONFIG_MAX_PTHREAD_MUTEX_COUNT];
static uint8_t posix_mutex_type[CONFIG_MAX_PTHREAD_MUTEX_COUNT];
SYS_BITARRAY_DEFINE_STATIC(posix_mutex_bitarray, CONFIG_MAX_PTHREAD_MUTEX_COUNT);
/*
* We reserve the MSB to mark a pthread_mutex_t as initialized (from the
* perspective of the application). With a linear space, this means that
* the theoretical pthread_mutex_t range is [0,2147483647].
*/
BUILD_ASSERT(CONFIG_MAX_PTHREAD_MUTEX_COUNT < PTHREAD_OBJ_MASK_INIT,
"CONFIG_MAX_PTHREAD_MUTEX_COUNT is too high");
static inline size_t posix_mutex_to_offset(struct k_mutex *m)
{
return m - posix_mutex_pool;
}
static inline size_t to_posix_mutex_idx(pthread_mutex_t mut)
{
return mark_pthread_obj_uninitialized(mut);
}
static struct k_mutex *get_posix_mutex(pthread_mutex_t mu)
{
int actually_initialized;
size_t bit = to_posix_mutex_idx(mu);
/* if the provided mutex does not claim to be initialized, its invalid */
if (!is_pthread_obj_initialized(mu)) {
LOG_ERR("Mutex is uninitialized (%x)", mu);
return NULL;
}
/* Mask off the MSB to get the actual bit index */
if (sys_bitarray_test_bit(&posix_mutex_bitarray, bit, &actually_initialized) < 0) {
LOG_ERR("Mutex is invalid (%x)", mu);
return NULL;
}
if (actually_initialized == 0) {
/* The mutex claims to be initialized but is actually not */
LOG_ERR("Mutex claims to be initialized (%x)", mu);
return NULL;
}
return &posix_mutex_pool[bit];
}
struct k_mutex *to_posix_mutex(pthread_mutex_t *mu)
{
int err;
size_t bit;
struct k_mutex *m;
if (*mu != PTHREAD_MUTEX_INITIALIZER) {
return get_posix_mutex(*mu);
}
/* Try and automatically associate a posix_mutex */
if (sys_bitarray_alloc(&posix_mutex_bitarray, 1, &bit) < 0) {
LOG_ERR("Unable to allocate pthread_mutex_t");
return NULL;
}
/* Record the associated posix_mutex in mu and mark as initialized */
*mu = mark_pthread_obj_initialized(bit);
/* Initialize the posix_mutex */
m = &posix_mutex_pool[bit];
err = k_mutex_init(m);
__ASSERT_NO_MSG(err == 0);
return m;
}
static int acquire_mutex(pthread_mutex_t *mu, k_timeout_t timeout)
{
int type;
size_t bit;
int ret = 0;
struct k_mutex *m;
k_spinlock_key_t key;
key = k_spin_lock(&pthread_mutex_spinlock);
m = to_posix_mutex(mu);
if (m == NULL) {
k_spin_unlock(&pthread_mutex_spinlock, key);
return EINVAL;
}
LOG_DBG("Locking mutex %p with timeout %llx", m, timeout.ticks);
bit = posix_mutex_to_offset(m);
type = posix_mutex_type[bit];
if (m->owner == k_current_get()) {
switch (type) {
case PTHREAD_MUTEX_NORMAL:
if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
k_spin_unlock(&pthread_mutex_spinlock, key);
LOG_ERR("Timeout locking mutex %p", m);
return EBUSY;
}
/* On most POSIX systems, this usually results in an infinite loop */
k_spin_unlock(&pthread_mutex_spinlock, key);
LOG_ERR("Attempt to relock non-recursive mutex %p", m);
do {
(void)k_sleep(K_FOREVER);
} while (true);
CODE_UNREACHABLE;
break;
case PTHREAD_MUTEX_RECURSIVE:
if (m->lock_count >= MUTEX_MAX_REC_LOCK) {
LOG_ERR("Mutex %p locked recursively too many times", m);
ret = EAGAIN;
}
break;
case PTHREAD_MUTEX_ERRORCHECK:
LOG_ERR("Attempt to recursively lock non-recursive mutex %p", m);
ret = EDEADLK;
break;
default:
__ASSERT(false, "invalid pthread type %d", type);
ret = EINVAL;
break;
}
}
k_spin_unlock(&pthread_mutex_spinlock, key);
if (ret == 0) {
ret = k_mutex_lock(m, timeout);
if (ret == -EAGAIN) {
LOG_ERR("Timeout locking mutex %p", m);
/*
* special quirk - k_mutex_lock() returns EAGAIN if a timeout occurs, but
* for pthreads, that means something different
*/
ret = ETIMEDOUT;
}
}
if (ret < 0) {
LOG_ERR("k_mutex_unlock() failed: %d", ret);
ret = -ret;
}
if (ret == 0) {
LOG_DBG("Locked mutex %p", m);
}
return ret;
}
/**
* @brief Lock POSIX mutex with non-blocking call.
*
* See IEEE 1003.1
*/
int pthread_mutex_trylock(pthread_mutex_t *m)
{
return acquire_mutex(m, K_NO_WAIT);
}
/**
* @brief Lock POSIX mutex with timeout.
*
*
* See IEEE 1003.1
*/
int pthread_mutex_timedlock(pthread_mutex_t *m,
const struct timespec *abstime)
{
int32_t timeout = (int32_t)timespec_to_timeoutms(abstime);
return acquire_mutex(m, K_MSEC(timeout));
}
/**
* @brief Initialize POSIX mutex.
*
* See IEEE 1003.1
*/
int pthread_mutex_init(pthread_mutex_t *mu, const pthread_mutexattr_t *_attr)
{
size_t bit;
struct k_mutex *m;
const struct pthread_mutexattr *attr = (const struct pthread_mutexattr *)_attr;
*mu = PTHREAD_MUTEX_INITIALIZER;
m = to_posix_mutex(mu);
if (m == NULL) {
return ENOMEM;
}
bit = posix_mutex_to_offset(m);
if (attr == NULL) {
posix_mutex_type[bit] = def_attr.type;
} else {
posix_mutex_type[bit] = attr->type;
}
LOG_DBG("Initialized mutex %p", m);
return 0;
}
/**
* @brief Lock POSIX mutex with blocking call.
*
* See IEEE 1003.1
*/
int pthread_mutex_lock(pthread_mutex_t *m)
{
return acquire_mutex(m, K_FOREVER);
}
/**
* @brief Unlock POSIX mutex.
*
* See IEEE 1003.1
*/
int pthread_mutex_unlock(pthread_mutex_t *mu)
{
int ret;
struct k_mutex *m;
m = get_posix_mutex(*mu);
if (m == NULL) {
return EINVAL;
}
ret = k_mutex_unlock(m);
if (ret < 0) {
LOG_ERR("k_mutex_unlock() failed: %d", ret);
return -ret;
}
__ASSERT_NO_MSG(ret == 0);
LOG_DBG("Unlocked mutex %p", m);
return 0;
}
/**
* @brief Destroy POSIX mutex.
*
* See IEEE 1003.1
*/
int pthread_mutex_destroy(pthread_mutex_t *mu)
{
int err;
size_t bit;
struct k_mutex *m;
m = get_posix_mutex(*mu);
if (m == NULL) {
return EINVAL;
}
bit = to_posix_mutex_idx(*mu);
err = sys_bitarray_free(&posix_mutex_bitarray, 1, bit);
__ASSERT_NO_MSG(err == 0);
LOG_DBG("Destroyed mutex %p", m);
return 0;
}
/**
* @brief Read protocol attribute for mutex.
*
* See IEEE 1003.1
*/
int pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr,
int *protocol)
{
*protocol = PTHREAD_PRIO_NONE;
return 0;
}
/**
* @brief Read type attribute for mutex.
*
* See IEEE 1003.1
*/
int pthread_mutexattr_gettype(const pthread_mutexattr_t *_attr, int *type)
{
const struct pthread_mutexattr *attr = (const struct pthread_mutexattr *)_attr;
*type = attr->type;
return 0;
}
/**
* @brief Set type attribute for mutex.
*
* See IEEE 1003.1
*/
int pthread_mutexattr_settype(pthread_mutexattr_t *_attr, int type)
{
struct pthread_mutexattr *attr = (struct pthread_mutexattr *)_attr;
int retc = EINVAL;
if ((type == PTHREAD_MUTEX_NORMAL) ||
(type == PTHREAD_MUTEX_RECURSIVE) ||
(type == PTHREAD_MUTEX_ERRORCHECK)) {
attr->type = type;
retc = 0;
}
return retc;
}
static int pthread_mutex_pool_init(void)
{
int err;
size_t i;
for (i = 0; i < CONFIG_MAX_PTHREAD_MUTEX_COUNT; ++i) {
err = k_mutex_init(&posix_mutex_pool[i]);
__ASSERT_NO_MSG(err == 0);
}
return 0;
}
SYS_INIT(pthread_mutex_pool_init, PRE_KERNEL_1, 0);