zephyr/net/ip/net_context.c

698 lines
15 KiB
C

/** @file
@brief Network context API
An API for applications to define a network connection.
*/
/*
* Copyright (c) 2015 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef CONFIG_NETWORK_IP_STACK_DEBUG_CONTEXT
#define DEBUG 1
#endif
#include "contiki/ip/uip-debug.h"
#include <nanokernel.h>
#include <string.h>
#include <errno.h>
#include <stdbool.h>
#include <net/net_ip.h>
#include <net/net_socket.h>
#include "contiki/ip/simple-udp.h"
#include "contiki/ipv6/uip-ds6.h"
#include "contiki/os/lib/random.h"
#include "contiki/ipv6/uip-ds6.h"
#ifdef CONFIG_NETWORKING_WITH_TCP
#include "contiki/os/sys/process.h"
#include "contiki/ip/psock.h"
#endif
#if !defined(CONFIG_NETWORK_IP_STACK_DEBUG_CONTEXT)
#undef NET_DBG
#define NET_DBG(...)
#endif
int net_context_get_receiver_registered(struct net_context *context);
struct net_context {
/* Connection tuple identifies the connection */
struct net_tuple tuple;
/* Application receives data via this fifo */
struct nano_fifo rx_queue;
/* Application connection data */
union {
struct simple_udp_connection udp;
#ifdef CONFIG_NETWORKING_WITH_TCP
struct {
/* Proto socket that handles one TCP connection. */
struct psock ps;
struct process tcp;
enum net_tcp_type tcp_type;
int connection_status;
void *conn;
struct net_buf *pending;
uint8_t retry_count;
};
#endif
};
bool receiver_registered;
};
/* Override this in makefile if needed */
#if defined(CONFIG_NET_MAX_CONTEXTS)
#define NET_MAX_CONTEXT CONFIG_NET_MAX_CONTEXTS
#else
#define NET_MAX_CONTEXT 5
#endif
static struct net_context contexts[NET_MAX_CONTEXT];
static struct nano_sem contexts_lock;
static void context_sem_give(struct nano_sem *chan)
{
switch (sys_execution_context_type_get()) {
case NANO_CTX_FIBER:
nano_fiber_sem_give(chan);
break;
case NANO_CTX_TASK:
nano_task_sem_give(chan);
break;
case NANO_CTX_ISR:
default:
/* Invalid context type */
break;
}
}
static int context_port_used(enum ip_protocol ip_proto, uint16_t local_port,
const struct net_addr *local_addr)
{
int i;
for (i = 0; i < NET_MAX_CONTEXT; i++) {
if (contexts[i].tuple.ip_proto == ip_proto &&
contexts[i].tuple.local_port == local_port &&
!memcmp(&contexts[i].tuple.local_addr, local_addr,
sizeof(struct net_addr))) {
return -EEXIST;
}
}
return 0;
}
struct net_context *net_context_get(enum ip_protocol ip_proto,
const struct net_addr *remote_addr,
uint16_t remote_port,
struct net_addr *local_addr,
uint16_t local_port)
{
#ifdef CONFIG_NETWORKING_WITH_IPV6
const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
const uip_ds6_addr_t *uip_addr;
uip_ipaddr_t ipaddr;
#endif
int i;
struct net_context *context = NULL;
/* User must provide storage for the local address. */
if (!local_addr) {
return NULL;
}
#ifdef CONFIG_NETWORKING_WITH_IPV6
if (memcmp(&local_addr->in6_addr, &in6addr_any,
sizeof(in6addr_any)) == 0) {
uip_addr = uip_ds6_get_global(-1);
if (!uip_addr) {
uip_addr = uip_ds6_get_link_local(-1);
}
if (!uip_addr) {
return NULL;
}
memcpy(&local_addr->in6_addr, &uip_addr->ipaddr,
sizeof(struct in6_addr));
}
#else
if (local_addr->in_addr.s_addr[0] == INADDR_ANY) {
uip_gethostaddr((uip_ipaddr_t *)&local_addr->in_addr);
}
#endif
nano_sem_take(&contexts_lock, TICKS_UNLIMITED);
if (local_port) {
if (context_port_used(ip_proto, local_port, local_addr) < 0) {
return NULL;
}
} else {
do {
local_port = random_rand() | 0x8000;
} while (context_port_used(ip_proto, local_port,
local_addr) == -EEXIST);
}
for (i = 0; i < NET_MAX_CONTEXT; i++) {
if (!contexts[i].tuple.ip_proto) {
contexts[i].tuple.ip_proto = ip_proto;
contexts[i].tuple.remote_addr = (struct net_addr *)remote_addr;
contexts[i].tuple.remote_port = remote_port;
contexts[i].tuple.local_addr = (struct net_addr *)local_addr;
contexts[i].tuple.local_port = local_port;
context = &contexts[i];
break;
}
}
context_sem_give(&contexts_lock);
/* Set our local address */
#ifdef CONFIG_NETWORKING_WITH_IPV6
memcpy(&ipaddr.u8, local_addr->in6_addr.s6_addr, sizeof(ipaddr.u8));
if (uip_is_addr_mcast(&ipaddr)) {
uip_ds6_maddr_add(&ipaddr);
} else {
uip_ds6_addr_add(&ipaddr, 0, ADDR_MANUAL);
}
#endif
return context;
}
void net_context_put(struct net_context *context)
{
if (!context) {
return;
}
nano_sem_take(&contexts_lock, TICKS_UNLIMITED);
if (context->tuple.ip_proto == IPPROTO_UDP) {
if (net_context_get_receiver_registered(context)) {
struct simple_udp_connection *udp =
net_context_get_udp_connection(context);
simple_udp_unregister(udp);
}
}
#ifdef CONFIG_NETWORKING_WITH_TCP
if (context->tcp_type == NET_TCP_TYPE_SERVER) {
tcp_unlisten(UIP_HTONS(context->tuple.local_port),
&context->tcp);
}
#endif
memset(&context->tuple, 0, sizeof(context->tuple));
memset(&context->udp, 0, sizeof(context->udp));
context->receiver_registered = false;
context_sem_give(&contexts_lock);
}
struct net_tuple *net_context_get_tuple(struct net_context *context)
{
if (!context) {
return NULL;
}
return &context->tuple;
}
struct nano_fifo *net_context_get_queue(struct net_context *context)
{
if (!context)
return NULL;
return &context->rx_queue;
}
struct simple_udp_connection *
net_context_get_udp_connection(struct net_context *context)
{
if (!context) {
return NULL;
}
return &context->udp;
}
#ifdef CONFIG_NETWORKING_WITH_TCP
static int handle_tcp_connection(struct psock *p, enum tcp_event_type type,
struct net_buf *buf)
{
PSOCK_BEGIN(p);
if (type == TCP_WRITE_EVENT) {
NET_DBG("Trying to send %d bytes data\n", uip_appdatalen(buf));
PSOCK_SEND(p, buf);
}
PSOCK_END(p);
}
int net_context_tcp_send(struct net_buf *buf)
{
bool connected, reset;
/* Prepare data to be sent */
process_post_synch(&ip_buf_context(buf)->tcp,
tcpip_event,
INT_TO_POINTER(TCP_WRITE_EVENT),
buf);
connected = uip_flags(buf) & UIP_CONNECTED;
reset = uip_flags(buf) & UIP_ABORT;
/* If the buffer ref is 1, then the buffer was sent and it
* is cleared already.
*/
if (buf->ref == 1) {
return 0;
}
return ip_buf_sent_status(buf);
}
/* This is called by contiki/ip/tcpip.c:tcpip_uipcall() when packet
* is processed.
*/
PROCESS_THREAD(tcp, ev, data, buf, user_data)
{
NET_DBG("tcp %p ev %d data %p buf %p user_data %p next line %d\n",
process_thread_tcp, ev, data, buf, user_data,
process_pt->lc);
PROCESS_BEGIN();
while(1) {
PROCESS_YIELD_UNTIL(ev == tcpip_event);
try_send:
if (POINTER_TO_INT(data) == TCP_WRITE_EVENT) {
/* We want to send data to peer. */
struct net_context *context = user_data;
if (!context) {
continue;
}
context->connection_status = ip_buf_sent_status(buf);
do {
context = user_data;
if (!context || !buf) {
break;
}
if (!context->ps.net_buf ||
context->ps.net_buf != buf) {
NET_DBG("psock init %p buf %p\n",
&context->ps, buf);
PSOCK_INIT(&context->ps, buf);
}
handle_tcp_connection(&context->ps,
POINTER_TO_INT(data),
buf);
PROCESS_WAIT_EVENT_UNTIL(ev == tcpip_event);
if (uip_timedout(buf)) {
break;
}
if (POINTER_TO_INT(data) != TCP_WRITE_EVENT) {
goto read_data;
}
} while(!(uip_closed(buf) ||
uip_aborted(buf) ||
uip_timedout(buf)));
context = user_data;
if (uip_timedout(buf)) {
ip_buf_sent_status(buf) = -ETIMEDOUT;
if (context) {
context->connection_status = -ETIMEDOUT;
}
continue;
}
if (context &&
context->tcp_type == NET_TCP_TYPE_CLIENT) {
NET_DBG("\nConnection closed.\n");
ip_buf_sent_status(buf) = -ECONNRESET;
}
continue;
} else {
if (buf && uip_aborted(buf)) {
struct net_context *context = user_data;
NET_DBG("Connection aborted context %p\n",
user_data);
context->connection_status = -ECONNRESET;
continue;
}
if (buf && uip_connected(buf)) {
struct net_context *context = user_data;
NET_DBG("Connection established context %p\n",
user_data);
context->connection_status = -EALREADY;
data = INT_TO_POINTER(TCP_WRITE_EVENT);
goto try_send;
}
}
read_data:
/* We are receiving data from peer. */
if (buf && uip_newdata(buf)) {
struct net_buf *clone;
if (!uip_len(buf)) {
continue;
}
/* Note that uIP stack will reuse the buffer when
* sending ACK to peer host. The sending will happen
* right after this function returns. Because of this
* we cannot use the same buffer to pass data to
* application.
*/
clone = net_buf_clone(buf);
if (!clone) {
NET_ERR("No enough RX buffers, "
"packet %p discarded\n", buf);
continue;
}
ip_buf_appdata(clone) = uip_buf(clone) +
(ip_buf_appdata(buf) - (void *)uip_buf(buf));
ip_buf_appdatalen(clone) = uip_len(buf);
ip_buf_len(clone) = uip_len(buf) + UIP_IPTCPH_LEN + UIP_LLH_LEN;
ip_buf_context(clone) = user_data;
if (!ip_buf_context(buf)) {
ip_buf_context(buf) = user_data;
}
uip_set_conn(clone) = uip_conn(buf);
uip_flags(clone) = uip_flags(buf);
uip_flags(clone) |= UIP_CONNECTED;
NET_DBG("packet received context %p buf %p len %d "
"appdata %p appdatalen %d\n",
ip_buf_context(clone),
clone,
ip_buf_len(clone),
ip_buf_appdata(clone),
ip_buf_appdatalen(clone));
nano_fifo_put(net_context_get_queue(user_data), clone);
ip_buf_sent_status(buf) = 1;
/* We let the application to read the data now */
fiber_yield();
}
}
PROCESS_END();
}
int net_context_tcp_init(struct net_context *context,
enum net_tcp_type tcp_type)
{
if (!context || context->tuple.ip_proto != IPPROTO_TCP) {
return -EINVAL;
}
if (context->receiver_registered) {
return 0;
}
context->receiver_registered = true;
if (context->tcp_type == NET_TCP_TYPE_UNKNOWN) {
/* This is the first call to this init func.
* If we are called by net_receive() first, then
* we are working as a server, if net_send() called
* us first, then we are the client.
*/
context->tcp_type = tcp_type;
} else if (context->tcp_type != tcp_type) {
/* This means that we have already selected that we
* are either client or server. Use the context
* value.
*/
return 0;
}
context->tcp.thread = process_thread_tcp;
if (context->tcp_type == NET_TCP_TYPE_SERVER) {
context->tcp.name = "TCP server";
NET_DBG("Listen to TCP port %d\n", context->tuple.local_port);
tcp_listen(UIP_HTONS(context->tuple.local_port),
&context->tcp);
#if UIP_ACTIVE_OPEN
} else {
context->tcp.name = "TCP client";
context->connection_status = -EINPROGRESS;
#ifdef CONFIG_NETWORKING_WITH_IPV6
NET_DBG("Connecting to ");
PRINT6ADDR((const uip_ipaddr_t *)&context->tuple.remote_addr->in6_addr);
PRINTF(" port %d\n", context->tuple.remote_port);
tcp_connect((uip_ipaddr_t *)
&context->tuple.remote_addr->in6_addr,
UIP_HTONS(context->tuple.remote_port),
context, &context->tcp);
#else /* CONFIG_NETWORKING_WITH_IPV6 */
NET_DBG("Connecting to ");
PRINT6ADDR((const uip_ipaddr_t *)&context->tuple.remote_addr->in_addr);
PRINTF(" port %d\n", context->tuple.remote_port);
tcp_connect((uip_ipaddr_t *)
&context->tuple.remote_addr->in_addr,
UIP_HTONS(context->tuple.remote_port),
context, &context->tcp);
#endif /* CONFIG_NETWORKING_WITH_IPV6 */
#endif /* UIP_ACTIVE_OPEN */
}
context->tcp.next = NULL;
process_start(&context->tcp, NULL, context);
return 0;
}
#endif /* TCP */
void net_context_init(void)
{
int i;
nano_sem_init(&contexts_lock);
memset(contexts, 0, sizeof(contexts));
for (i = 0; i < NET_MAX_CONTEXT; i++) {
nano_fifo_init(&contexts[i].rx_queue);
}
context_sem_give(&contexts_lock);
}
int net_context_get_receiver_registered(struct net_context *context)
{
if (!context) {
return -ENOENT;
}
if (context->receiver_registered) {
return true;
}
return false;
}
void net_context_set_receiver_registered(struct net_context *context)
{
if (!context) {
return;
}
context->receiver_registered = true;
}
void net_context_unset_receiver_registered(struct net_context *context)
{
if (!context) {
return;
}
context->receiver_registered = false;
}
int net_context_get_connection_status(struct net_context *context)
{
if (!context) {
return -ENOENT;
}
#if !defined(CONFIG_NETWORKING_WITH_TCP)
return 0;
#else
if (context->tuple.ip_proto == IPPROTO_TCP) {
return context->connection_status;
} else {
return 0;
}
#endif
}
void net_context_set_connection_status(struct net_context *context,
int status)
{
#if !defined(CONFIG_NETWORKING_WITH_TCP)
return;
#else
if (!context) {
return;
}
if (context->tuple.ip_proto == IPPROTO_TCP) {
NET_DBG("context %p status %d\n", context, status);
context->connection_status = status;
}
#endif
}
void *net_context_get_internal_connection(struct net_context *context)
{
#if !defined(CONFIG_NETWORKING_WITH_TCP)
return NULL;
#else
if (!context) {
return NULL;
}
if (context->tuple.ip_proto == IPPROTO_TCP) {
return context->conn;
} else {
return NULL;
}
#endif
}
void net_context_set_internal_connection(struct net_context *context,
void *conn)
{
#if !defined(CONFIG_NETWORKING_WITH_TCP)
return;
#else
if (!context) {
return;
}
if (context->tuple.ip_proto == IPPROTO_TCP) {
context->conn = conn;
}
#endif
}
struct net_context *net_context_find_internal_connection(void *conn)
{
#if !defined(CONFIG_NETWORKING_WITH_TCP)
return NULL;
#else
int i;
for (i = 0; i < NET_MAX_CONTEXT; i++) {
if (contexts[i].conn == conn) {
return &contexts[i];
}
}
return NULL;
#endif
}
struct net_buf *net_context_tcp_get_pending(struct net_context *context)
{
#if !defined(CONFIG_NETWORKING_WITH_TCP)
return NULL;
#else
if (!context) {
return NULL;
}
return context->pending;
#endif
}
void net_context_tcp_set_pending(struct net_context *context,
struct net_buf *buf)
{
#if !defined(CONFIG_NETWORKING_WITH_TCP)
return;
#else
if (!context) {
return;
}
context->pending = buf;
#endif
}
void net_context_tcp_set_retry_count(struct net_context *context,
uint8_t count)
{
#if !defined(CONFIG_NETWORKING_WITH_TCP)
return;
#else
if (!context) {
return;
}
context->retry_count = count;
#endif
}
uint8_t net_context_tcp_get_retry_count(struct net_context *context)
{
#if !defined(CONFIG_NETWORKING_WITH_TCP)
return 0;
#else
if (!context) {
return 0;
}
return context->retry_count;
#endif
}