374 lines
9.2 KiB
C
374 lines
9.2 KiB
C
/*
|
|
* Copyright (c) 2018 Nordic Semiconductor ASA
|
|
* Copyright (c) 2017 Exati Tecnologia Ltda.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <drivers/entropy.h>
|
|
#include <sys/atomic.h>
|
|
#include <soc.h>
|
|
#include <hal/nrf_rng.h>
|
|
|
|
#define DT_DRV_COMPAT nordic_nrf_rng
|
|
|
|
#define IRQN DT_INST_IRQN(0)
|
|
#define IRQ_PRIO DT_INST_IRQ(0, priority)
|
|
|
|
/*
|
|
* The nRF5 RNG HW has several characteristics that need to be taken
|
|
* into account by the driver to achieve energy efficient generation
|
|
* of entropy.
|
|
*
|
|
* The RNG does not support continuously DMA'ing entropy into RAM,
|
|
* values must be read out by the CPU byte-by-byte. But once started,
|
|
* it will continue to generate bytes until stopped.
|
|
*
|
|
* The generation time for byte 0 after starting generation (with BIAS
|
|
* correction) is:
|
|
*
|
|
* nRF51822 - 677us
|
|
* nRF52810 - 248us
|
|
* nRF52840 - 248us
|
|
*
|
|
* The generation time for byte N >= 1 after starting generation (with
|
|
* BIAS correction) is:
|
|
*
|
|
* nRF51822 - 677us
|
|
* nRF52810 - 120us
|
|
* nRF52840 - 120us
|
|
*
|
|
* Due to the first byte in a stream of bytes being more costly on
|
|
* some platforms a "water system" inspired algorithm is used to
|
|
* amortize the cost of the first byte.
|
|
*
|
|
* The algorithm will delay generation of entropy until the amount of
|
|
* bytes goes below THRESHOLD, at which point it will generate entropy
|
|
* until the BUF_LEN limit is reached.
|
|
*
|
|
* The entropy level is checked at the end of every consumption of
|
|
* entropy.
|
|
*
|
|
* The algorithm and HW together has these characteristics:
|
|
*
|
|
* Setting a low threshold will highly amortize the extra 120us cost
|
|
* of the first byte on nRF52.
|
|
*
|
|
* Setting a high threshold will minimize the time spent waiting for
|
|
* entropy.
|
|
*
|
|
* To minimize power consumption the threshold should either be set
|
|
* low or high depending on the HFCLK-usage pattern of other
|
|
* components.
|
|
*
|
|
* If the threshold is set close to the BUF_LEN, and the system
|
|
* happens to anyway be using the HFCLK for several hundred us after
|
|
* entropy is requested there will be no extra current-consumption for
|
|
* keeping clocks running for entropy generation.
|
|
*
|
|
*/
|
|
|
|
struct rng_pool {
|
|
uint8_t first_alloc;
|
|
uint8_t first_read;
|
|
uint8_t last;
|
|
uint8_t mask;
|
|
uint8_t threshold;
|
|
uint8_t buffer[0];
|
|
};
|
|
|
|
#define RNG_POOL_DEFINE(name, len) uint8_t name[sizeof(struct rng_pool) + (len)]
|
|
|
|
BUILD_ASSERT((CONFIG_ENTROPY_NRF5_ISR_POOL_SIZE &
|
|
(CONFIG_ENTROPY_NRF5_ISR_POOL_SIZE - 1)) == 0,
|
|
"The CONFIG_ENTROPY_NRF5_ISR_POOL_SIZE must be a power of 2!");
|
|
|
|
BUILD_ASSERT((CONFIG_ENTROPY_NRF5_THR_POOL_SIZE &
|
|
(CONFIG_ENTROPY_NRF5_THR_POOL_SIZE - 1)) == 0,
|
|
"The CONFIG_ENTROPY_NRF5_THR_POOL_SIZE must be a power of 2!");
|
|
|
|
struct entropy_nrf5_dev_data {
|
|
struct k_sem sem_lock;
|
|
struct k_sem sem_sync;
|
|
|
|
RNG_POOL_DEFINE(isr, CONFIG_ENTROPY_NRF5_ISR_POOL_SIZE);
|
|
RNG_POOL_DEFINE(thr, CONFIG_ENTROPY_NRF5_THR_POOL_SIZE);
|
|
};
|
|
|
|
static struct entropy_nrf5_dev_data entropy_nrf5_data;
|
|
|
|
#define DEV_DATA(dev) \
|
|
((struct entropy_nrf5_dev_data *)(dev)->data)
|
|
|
|
static int random_byte_get(void)
|
|
{
|
|
int retval = -EAGAIN;
|
|
unsigned int key;
|
|
|
|
key = irq_lock();
|
|
|
|
if (nrf_rng_event_check(NRF_RNG, NRF_RNG_EVENT_VALRDY)) {
|
|
retval = nrf_rng_random_value_get(NRF_RNG);
|
|
nrf_rng_event_clear(NRF_RNG, NRF_RNG_EVENT_VALRDY);
|
|
}
|
|
|
|
irq_unlock(key);
|
|
|
|
return retval;
|
|
}
|
|
|
|
#pragma GCC push_options
|
|
#if defined(CONFIG_BT_CTLR_FAST_ENC)
|
|
#pragma GCC optimize ("Ofast")
|
|
#endif
|
|
static uint16_t rng_pool_get(struct rng_pool *rngp, uint8_t *buf, uint16_t len)
|
|
{
|
|
uint32_t last = rngp->last;
|
|
uint32_t mask = rngp->mask;
|
|
uint8_t *dst = buf;
|
|
uint32_t first, available;
|
|
uint32_t other_read_in_progress;
|
|
unsigned int key;
|
|
|
|
key = irq_lock();
|
|
first = rngp->first_alloc;
|
|
|
|
/*
|
|
* The other_read_in_progress is non-zero if rngp->first_read != first,
|
|
* which means that lower-priority code (which was interrupted by this
|
|
* call) already allocated area for read.
|
|
*/
|
|
other_read_in_progress = (rngp->first_read ^ first);
|
|
|
|
available = (last - first) & mask;
|
|
if (available < len) {
|
|
len = available;
|
|
}
|
|
|
|
/*
|
|
* Move alloc index forward to signal, that part of the buffer is
|
|
* now reserved for this call.
|
|
*/
|
|
rngp->first_alloc = (first + len) & mask;
|
|
irq_unlock(key);
|
|
|
|
while (likely(len--)) {
|
|
*dst++ = rngp->buffer[first];
|
|
first = (first + 1) & mask;
|
|
}
|
|
|
|
/*
|
|
* If this call is the last one accessing the pool, move read index
|
|
* to signal that all allocated regions are now read and could be
|
|
* overwritten.
|
|
*/
|
|
if (likely(!other_read_in_progress)) {
|
|
key = irq_lock();
|
|
rngp->first_read = rngp->first_alloc;
|
|
irq_unlock(key);
|
|
}
|
|
|
|
len = dst - buf;
|
|
available = available - len;
|
|
if (available <= rngp->threshold) {
|
|
nrf_rng_task_trigger(NRF_RNG, NRF_RNG_TASK_START);
|
|
}
|
|
|
|
return len;
|
|
}
|
|
#pragma GCC pop_options
|
|
|
|
static int rng_pool_put(struct rng_pool *rngp, uint8_t byte)
|
|
{
|
|
uint8_t first = rngp->first_read;
|
|
uint8_t last = rngp->last;
|
|
uint8_t mask = rngp->mask;
|
|
|
|
/* Signal error if the pool is full. */
|
|
if (((last - first) & mask) == mask) {
|
|
return -ENOBUFS;
|
|
}
|
|
|
|
rngp->buffer[last] = byte;
|
|
rngp->last = (last + 1) & mask;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rng_pool_init(struct rng_pool *rngp, uint16_t size, uint8_t threshold)
|
|
{
|
|
rngp->first_alloc = 0U;
|
|
rngp->first_read = 0U;
|
|
rngp->last = 0U;
|
|
rngp->mask = size - 1;
|
|
rngp->threshold = threshold;
|
|
}
|
|
|
|
static void isr(const void *arg)
|
|
{
|
|
int byte, ret;
|
|
|
|
ARG_UNUSED(arg);
|
|
|
|
byte = random_byte_get();
|
|
if (byte < 0) {
|
|
return;
|
|
}
|
|
|
|
ret = rng_pool_put((struct rng_pool *)(entropy_nrf5_data.isr), byte);
|
|
if (ret < 0) {
|
|
ret = rng_pool_put((struct rng_pool *)(entropy_nrf5_data.thr),
|
|
byte);
|
|
if (ret < 0) {
|
|
nrf_rng_task_trigger(NRF_RNG, NRF_RNG_TASK_STOP);
|
|
}
|
|
|
|
k_sem_give(&entropy_nrf5_data.sem_sync);
|
|
}
|
|
}
|
|
|
|
static int entropy_nrf5_get_entropy(const struct device *device, uint8_t *buf,
|
|
uint16_t len)
|
|
{
|
|
/* Check if this API is called on correct driver instance. */
|
|
__ASSERT_NO_MSG(&entropy_nrf5_data == DEV_DATA(device));
|
|
|
|
while (len) {
|
|
uint16_t bytes;
|
|
|
|
k_sem_take(&entropy_nrf5_data.sem_lock, K_FOREVER);
|
|
bytes = rng_pool_get((struct rng_pool *)(entropy_nrf5_data.thr),
|
|
buf, len);
|
|
k_sem_give(&entropy_nrf5_data.sem_lock);
|
|
|
|
if (bytes == 0U) {
|
|
/* Pool is empty: Sleep until next interrupt. */
|
|
k_sem_take(&entropy_nrf5_data.sem_sync, K_FOREVER);
|
|
continue;
|
|
}
|
|
|
|
len -= bytes;
|
|
buf += bytes;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int entropy_nrf5_get_entropy_isr(const struct device *dev,
|
|
uint8_t *buf, uint16_t len,
|
|
uint32_t flags)
|
|
{
|
|
uint16_t cnt = len;
|
|
|
|
/* Check if this API is called on correct driver instance. */
|
|
__ASSERT_NO_MSG(&entropy_nrf5_data == DEV_DATA(dev));
|
|
|
|
if (likely((flags & ENTROPY_BUSYWAIT) == 0U)) {
|
|
return rng_pool_get((struct rng_pool *)(entropy_nrf5_data.isr),
|
|
buf, len);
|
|
}
|
|
|
|
if (len) {
|
|
unsigned int key;
|
|
int irq_enabled;
|
|
|
|
key = irq_lock();
|
|
irq_enabled = irq_is_enabled(IRQN);
|
|
irq_disable(IRQN);
|
|
irq_unlock(key);
|
|
|
|
nrf_rng_event_clear(NRF_RNG, NRF_RNG_EVENT_VALRDY);
|
|
nrf_rng_task_trigger(NRF_RNG, NRF_RNG_TASK_START);
|
|
|
|
/* Clear NVIC pending bit. This ensures that a subsequent
|
|
* RNG event will set the Cortex-M single-bit event register
|
|
* to 1 (the bit is set when NVIC pending IRQ status is
|
|
* changed from 0 to 1)
|
|
*/
|
|
NVIC_ClearPendingIRQ(IRQN);
|
|
|
|
do {
|
|
int byte;
|
|
|
|
while (!nrf_rng_event_check(NRF_RNG,
|
|
NRF_RNG_EVENT_VALRDY)) {
|
|
/*
|
|
* To guarantee waking up from the event, the
|
|
* SEV-On-Pend feature must be enabled (enabled
|
|
* during ARCH initialization).
|
|
*
|
|
* DSB is recommended by spec before WFE (to
|
|
* guarantee completion of memory transactions)
|
|
*/
|
|
__DSB();
|
|
__WFE();
|
|
__SEV();
|
|
__WFE();
|
|
}
|
|
|
|
byte = random_byte_get();
|
|
NVIC_ClearPendingIRQ(IRQN);
|
|
|
|
if (byte < 0) {
|
|
continue;
|
|
}
|
|
|
|
buf[--len] = byte;
|
|
} while (len);
|
|
|
|
if (irq_enabled) {
|
|
irq_enable(IRQN);
|
|
}
|
|
}
|
|
|
|
return cnt;
|
|
}
|
|
|
|
static int entropy_nrf5_init(const struct device *device);
|
|
|
|
static const struct entropy_driver_api entropy_nrf5_api_funcs = {
|
|
.get_entropy = entropy_nrf5_get_entropy,
|
|
.get_entropy_isr = entropy_nrf5_get_entropy_isr
|
|
};
|
|
|
|
DEVICE_DT_INST_DEFINE(0,
|
|
entropy_nrf5_init, device_pm_control_nop,
|
|
&entropy_nrf5_data, NULL,
|
|
PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
|
|
&entropy_nrf5_api_funcs);
|
|
|
|
static int entropy_nrf5_init(const struct device *device)
|
|
{
|
|
/* Check if this API is called on correct driver instance. */
|
|
__ASSERT_NO_MSG(&entropy_nrf5_data == DEV_DATA(device));
|
|
|
|
/* Locking semaphore initialized to 1 (unlocked) */
|
|
k_sem_init(&entropy_nrf5_data.sem_lock, 1, 1);
|
|
|
|
/* Synching semaphore */
|
|
k_sem_init(&entropy_nrf5_data.sem_sync, 0, 1);
|
|
|
|
rng_pool_init((struct rng_pool *)(entropy_nrf5_data.thr),
|
|
CONFIG_ENTROPY_NRF5_THR_POOL_SIZE,
|
|
CONFIG_ENTROPY_NRF5_THR_THRESHOLD);
|
|
rng_pool_init((struct rng_pool *)(entropy_nrf5_data.isr),
|
|
CONFIG_ENTROPY_NRF5_ISR_POOL_SIZE,
|
|
CONFIG_ENTROPY_NRF5_ISR_THRESHOLD);
|
|
|
|
/* Enable or disable bias correction */
|
|
if (IS_ENABLED(CONFIG_ENTROPY_NRF5_BIAS_CORRECTION)) {
|
|
nrf_rng_error_correction_enable(NRF_RNG);
|
|
} else {
|
|
nrf_rng_error_correction_disable(NRF_RNG);
|
|
}
|
|
|
|
nrf_rng_event_clear(NRF_RNG, NRF_RNG_EVENT_VALRDY);
|
|
nrf_rng_int_enable(NRF_RNG, NRF_RNG_INT_VALRDY_MASK);
|
|
nrf_rng_task_trigger(NRF_RNG, NRF_RNG_TASK_START);
|
|
|
|
IRQ_CONNECT(IRQN, IRQ_PRIO, isr, &entropy_nrf5_data, 0);
|
|
irq_enable(IRQN);
|
|
|
|
return 0;
|
|
}
|