zephyr/arch/Kconfig

320 lines
8.8 KiB
Plaintext

# Kconfig - general architecture configuration options
#
# Copyright (c) 2014-2015 Wind River Systems, Inc.
# Copyright (c) 2015 Intel Corporation
# Copyright (c) 2016 Cadence Design Systems, Inc.
#
# SPDX-License-Identifier: Apache-2.0
#
# Include these first so that any properties (e.g. defaults) below can be
# overriden (by defining symbols in multiple locations)
# Note: $ARCH might be a glob pattern
source "arch/$(ARCH)/Kconfig"
choice
prompt "Architecture"
default X86
config ARC
bool "ARC architecture"
select HAS_DTS
config ARM
bool "ARM architecture"
select ARCH_HAS_THREAD_ABORT
config X86
bool "x86 architecture"
select ATOMIC_OPERATIONS_BUILTIN
config NIOS2
bool "Nios II Gen 2 architecture"
select ATOMIC_OPERATIONS_C
config RISCV32
bool "RISCV32 architecture"
config XTENSA
bool "Xtensa architecture"
config ARCH_POSIX
bool "POSIX (native) architecture"
select ATOMIC_OPERATIONS_BUILTIN
select ARCH_HAS_CUSTOM_SWAP_TO_MAIN
select ARCH_HAS_CUSTOM_BUSY_WAIT
select ARCH_HAS_THREAD_ABORT
select NATIVE_APPLICATION
endchoice
menu "General Architecture Options"
config HW_STACK_PROTECTION
bool "Hardware Stack Protection"
depends on ARCH_HAS_STACK_PROTECTION
help
Select this option to enable hardware-based platform features to
catch stack overflows when the system is running in privileged
mode. If CONFIG_USERSPACE is not enabled, the system is always
running in privileged mode.
Note that this does not necessarily prevent corruption and assertions
about the overall system state when a fault is triggered cannot be
made.
config USERSPACE
bool "User mode threads (EXPERIMENTAL)"
depends on ARCH_HAS_USERSPACE
help
When enabled, threads may be created or dropped down to user mode,
which has significantly restricted permissions and must interact
with the kernel via system calls. See Zephyr documentation for more
details about this feature.
If a user thread overflows its stack, this will be caught and the
kernel itself will be shielded from harm. Enabling this option
may or may not catch stack overflows when the system is in
privileged mode or handling a system call; to ensure these are always
caught, enable CONFIG_HW_STACK_PROTECTION.
This feature is under heavy development and APIs related to it are
subject to change, even if declared non-private.
config PRIVILEGED_STACK_SIZE
int "Size of privileged stack"
default 384 if ARC
default 256
depends on ARCH_HAS_USERSPACE
help
This option sets the privileged stack region size that will be used
in addition to the user mode thread stack. During normal execution,
this region will be inaccessible from user mode. During system calls,
this region will be utilized by the system call.
config STACK_GROWS_UP
bool "Stack grows towards higher memory addresses"
help
Select this option if the architecture has upward growing thread
stacks. This is not common.
config MAX_THREAD_BYTES
int "Bytes to use when tracking object thread permissions"
default 2
depends on USERSPACE
help
Every kernel object will have an associated bitfield to store
thread permissions for that object. This controls the size of the
bitfield (in bytes) and imposes a limit on how many threads can
be created in the system.
config DYNAMIC_OBJECTS
bool "Allow kernel objects to be allocated at runtime"
depends on USERSPACE
help
Enabling this option allows for kernel objects to be requested from
the calling thread's resource pool, at a slight cost in performance
due to the supplemental run-time tables required to validate such
objects.
Objects allocated in this way can be freed with a supervisor-only
API call, or when the number of references to that object drops to
zero.
config SIMPLE_FATAL_ERROR_HANDLER
bool "Simple system fatal error handler"
default y if !MULTITHREADING
help
Provides an implementation of _SysFatalErrorHandler() that hard hangs
instead of aborting the faulting thread, and does not print anything,
for footprint-concerned systems. Only enable this option if you do not
want debug capabilities in case of system fatal error.
menu "Interrupt Configuration"
#
# Interrupt related configs
#
config GEN_ISR_TABLES
bool "Use generated IRQ tables"
help
This option controls whether a platform uses the gen_isr_tables
script to generate its interrupt tables. This mechanism will create
an appropriate hardware vector table and/or software IRQ table.
config GEN_IRQ_VECTOR_TABLE
bool "Generate an interrupt vector table"
default y
depends on GEN_ISR_TABLES
help
This option controls whether a platform using gen_isr_tables
needs an interrupt vector table created. Only disable this if the
platform does not use a vector table at all, or requires the vector
table to be in a format that is not an array of function pointers
indexed by IRQ line. In the latter case, the vector table must be
supplied by the application or architecture code.
config GEN_SW_ISR_TABLE
bool "Generate a software ISR table"
default y
depends on GEN_ISR_TABLES
help
This option controls whether a platform using gen_isr_tables
needs a software ISR table table created. This is an array of struct
_isr_table_entry containing the interrupt service routine and supplied
parameter.
config GEN_IRQ_START_VECTOR
int
default 0
depends on GEN_ISR_TABLES
help
On some architectures, part of the vector table may be reserved for
system exceptions and is declared separately from the tables
created by gen_isr_tables.py. When creating these tables, this value
will be subtracted from CONFIG_NUM_IRQS to properly size them.
This is a hidden option which needs to be set per architecture and
left alone.
config IRQ_OFFLOAD
bool "Enable IRQ offload"
help
Enable irq_offload() API which allows functions to be synchronously
run in interrupt context. Mainly useful for test cases.
endmenu # Interrupt configuration
endmenu
#
# Architecture Capabilities
#
config ARCH_HAS_STACK_PROTECTION
bool
config ARCH_HAS_USERSPACE
bool
config ARCH_HAS_EXECUTABLE_PAGE_BIT
bool
#
# Other architecture related options
#
config ARCH_HAS_THREAD_ABORT
bool
#
# Hidden PM feature configs which are to be selected by
# individual SoC.
#
config SYS_POWER_LOW_POWER_STATE_SUPPORTED
# Hidden
bool
help
This option signifies that the target supports the SYS_POWER_LOW_POWER_STATE
configuration option.
config SYS_POWER_DEEP_SLEEP_SUPPORTED
# Hidden
bool
help
This option signifies that the target supports the SYS_POWER_DEEP_SLEEP
configuration option.
config BOOTLOADER_CONTEXT_RESTORE_SUPPORTED
# Hidden
bool
help
This option signifies that the target has options of bootloaders
that support context restore upon resume from deep sleep
# End hidden CPU family configs
#
config CPU_HAS_FPU
bool
help
This option is enabled when the CPU has hardware floating point
unit.
config CPU_HAS_MPU
bool
# Omit prompt to signify "hidden" option
help
This option is enabled when the CPU has a Memory Protection Unit (MPU).
config MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT
bool
# Omit prompt to signify "hidden" option
help
This option is enabled when the MPU requires a power of two alignment
and size for MPU regions.
menu "Floating Point Options"
depends on CPU_HAS_FPU
config FLOAT
bool "Floating point registers"
help
This option allows threads to use the floating point registers.
By default, only a single thread may use the registers.
Disabling this option means that any thread that uses a
floating point register will get a fatal exception.
config FP_SHARING
bool "Floating point register sharing"
depends on FLOAT
help
This option allows multiple threads to use the floating point
registers.
endmenu
#
# End hidden PM feature configs
#
config ARCH
string
help
System architecture string.
config SOC
string
help
SoC name which can be found under soc/<arch>/<soc name>.
This option holds the directory name used by the build system to locate
the correct linker and header files for the SoC. This option will go away
once all SoCs are using family/series structure.
config SOC_SERIES
string
help
SoC series name which can be found under soc/<arch>/<family>/<series>.
This option holds the directory name used by the build system to locate
the correct linker and header files.
config SOC_FAMILY
string
help
SoC family name which can be found under soc/<arch>/<family>.
This option holds the directory name used by the build system to locate
the correct linker and header files.
config BOARD
string
help
This option holds the name of the board and is used to locate the files
related to the board in the source tree (under boards/).
The Board is the first location where we search for a linker.ld file,
if not found we look for the linker file in
soc/<arch>/<family>/<series>