zephyr/drivers/spi/spi_nrfx_spim.c

466 lines
12 KiB
C

/*
* Copyright (c) 2017 - 2018, Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <drivers/spi.h>
#include <nrfx_spim.h>
#include <string.h>
#define LOG_DOMAIN "spi_nrfx_spim"
#define LOG_LEVEL CONFIG_SPI_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(spi_nrfx_spim);
#include "spi_context.h"
struct spi_nrfx_data {
struct spi_context ctx;
const struct device *dev;
size_t chunk_len;
bool busy;
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
uint32_t pm_state;
#endif
#if (CONFIG_SPI_NRFX_RAM_BUFFER_SIZE > 0)
uint8_t buffer[CONFIG_SPI_NRFX_RAM_BUFFER_SIZE];
#endif
};
struct spi_nrfx_config {
nrfx_spim_t spim;
size_t max_chunk_len;
nrfx_spim_config_t config;
};
static inline struct spi_nrfx_data *get_dev_data(const struct device *dev)
{
return dev->data;
}
static inline const struct spi_nrfx_config *get_dev_config(const struct device *dev)
{
return dev->config;
}
static inline nrf_spim_frequency_t get_nrf_spim_frequency(uint32_t frequency)
{
/* Get the highest supported frequency not exceeding the requested one.
*/
if (frequency < 250000) {
return NRF_SPIM_FREQ_125K;
} else if (frequency < 500000) {
return NRF_SPIM_FREQ_250K;
} else if (frequency < 1000000) {
return NRF_SPIM_FREQ_500K;
} else if (frequency < 2000000) {
return NRF_SPIM_FREQ_1M;
} else if (frequency < 4000000) {
return NRF_SPIM_FREQ_2M;
} else if (frequency < 8000000) {
return NRF_SPIM_FREQ_4M;
/* Only the devices with HS-SPI can use SPI clock higher than 8 MHz and
* have SPIM_FREQUENCY_FREQUENCY_M32 defined in their own bitfields.h
*/
#if defined(SPIM_FREQUENCY_FREQUENCY_M32)
} else if (frequency < 16000000) {
return NRF_SPIM_FREQ_8M;
} else if (frequency < 32000000) {
return NRF_SPIM_FREQ_16M;
} else {
return NRF_SPIM_FREQ_32M;
#else
} else {
return NRF_SPIM_FREQ_8M;
#endif
}
}
static inline nrf_spim_mode_t get_nrf_spim_mode(uint16_t operation)
{
if (SPI_MODE_GET(operation) & SPI_MODE_CPOL) {
if (SPI_MODE_GET(operation) & SPI_MODE_CPHA) {
return NRF_SPIM_MODE_3;
} else {
return NRF_SPIM_MODE_2;
}
} else {
if (SPI_MODE_GET(operation) & SPI_MODE_CPHA) {
return NRF_SPIM_MODE_1;
} else {
return NRF_SPIM_MODE_0;
}
}
}
static inline nrf_spim_bit_order_t get_nrf_spim_bit_order(uint16_t operation)
{
if (operation & SPI_TRANSFER_LSB) {
return NRF_SPIM_BIT_ORDER_LSB_FIRST;
} else {
return NRF_SPIM_BIT_ORDER_MSB_FIRST;
}
}
static int configure(const struct device *dev,
const struct spi_config *spi_cfg)
{
struct spi_context *ctx = &get_dev_data(dev)->ctx;
const nrfx_spim_t *spim = &get_dev_config(dev)->spim;
if (spi_context_configured(ctx, spi_cfg)) {
/* Already configured. No need to do it again. */
return 0;
}
if (SPI_OP_MODE_GET(spi_cfg->operation) != SPI_OP_MODE_MASTER) {
LOG_ERR("Slave mode is not supported on %s",
dev->name);
return -EINVAL;
}
if (spi_cfg->operation & SPI_MODE_LOOP) {
LOG_ERR("Loopback mode is not supported");
return -EINVAL;
}
if ((spi_cfg->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) {
LOG_ERR("Only single line mode is supported");
return -EINVAL;
}
if (SPI_WORD_SIZE_GET(spi_cfg->operation) != 8) {
LOG_ERR("Word sizes other than 8 bits"
" are not supported");
return -EINVAL;
}
if (spi_cfg->frequency < 125000) {
LOG_ERR("Frequencies lower than 125 kHz are not supported");
return -EINVAL;
}
ctx->config = spi_cfg;
spi_context_cs_configure(ctx);
nrf_spim_configure(spim->p_reg,
get_nrf_spim_mode(spi_cfg->operation),
get_nrf_spim_bit_order(spi_cfg->operation));
nrf_spim_frequency_set(spim->p_reg,
get_nrf_spim_frequency(spi_cfg->frequency));
return 0;
}
static void transfer_next_chunk(const struct device *dev)
{
struct spi_nrfx_data *dev_data = get_dev_data(dev);
const struct spi_nrfx_config *dev_config = get_dev_config(dev);
struct spi_context *ctx = &dev_data->ctx;
int error = 0;
size_t chunk_len = spi_context_longest_current_buf(ctx);
if (chunk_len > 0) {
nrfx_spim_xfer_desc_t xfer;
nrfx_err_t result;
const uint8_t *tx_buf = ctx->tx_buf;
#if (CONFIG_SPI_NRFX_RAM_BUFFER_SIZE > 0)
if (spi_context_tx_buf_on(ctx) && !nrfx_is_in_ram(tx_buf)) {
if (chunk_len > sizeof(dev_data->buffer)) {
chunk_len = sizeof(dev_data->buffer);
}
memcpy(dev_data->buffer, tx_buf, chunk_len);
tx_buf = dev_data->buffer;
}
#endif
if (chunk_len > dev_config->max_chunk_len) {
chunk_len = dev_config->max_chunk_len;
}
dev_data->chunk_len = chunk_len;
xfer.p_tx_buffer = tx_buf;
xfer.tx_length = spi_context_tx_buf_on(ctx) ? chunk_len : 0;
xfer.p_rx_buffer = ctx->rx_buf;
xfer.rx_length = spi_context_rx_buf_on(ctx) ? chunk_len : 0;
/* This SPIM driver is only used by the NRF52832 if
SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58 is enabled */
if (IS_ENABLED(CONFIG_SOC_NRF52832) &&
(xfer.rx_length == 1 && xfer.tx_length <= 1)) {
LOG_WRN("Transaction aborted since it would trigger nRF52832 PAN 58");
error = -EIO;
}
if (!error) {
result = nrfx_spim_xfer(&dev_config->spim, &xfer, 0);
if (result == NRFX_SUCCESS) {
return;
}
error = -EIO;
}
}
spi_context_cs_control(ctx, false);
LOG_DBG("Transaction finished with status %d", error);
spi_context_complete(ctx, error);
dev_data->busy = false;
}
static int transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
struct k_poll_signal *signal)
{
struct spi_nrfx_data *dev_data = get_dev_data(dev);
int error;
spi_context_lock(&dev_data->ctx, asynchronous, signal);
error = configure(dev, spi_cfg);
if (error == 0) {
dev_data->busy = true;
spi_context_buffers_setup(&dev_data->ctx, tx_bufs, rx_bufs, 1);
spi_context_cs_control(&dev_data->ctx, true);
transfer_next_chunk(dev);
error = spi_context_wait_for_completion(&dev_data->ctx);
}
spi_context_release(&dev_data->ctx, error);
return error;
}
static int spi_nrfx_transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_nrfx_transceive_async(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
struct k_poll_signal *async)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, async);
}
#endif /* CONFIG_SPI_ASYNC */
static int spi_nrfx_release(const struct device *dev,
const struct spi_config *spi_cfg)
{
struct spi_nrfx_data *dev_data = get_dev_data(dev);
if (!spi_context_configured(&dev_data->ctx, spi_cfg)) {
return -EINVAL;
}
if (dev_data->busy) {
return -EBUSY;
}
spi_context_unlock_unconditionally(&dev_data->ctx);
return 0;
}
static const struct spi_driver_api spi_nrfx_driver_api = {
.transceive = spi_nrfx_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_nrfx_transceive_async,
#endif
.release = spi_nrfx_release,
};
static void event_handler(const nrfx_spim_evt_t *p_event, void *p_context)
{
struct spi_nrfx_data *dev_data = p_context;
if (p_event->type == NRFX_SPIM_EVENT_DONE) {
spi_context_update_tx(&dev_data->ctx, 1, dev_data->chunk_len);
spi_context_update_rx(&dev_data->ctx, 1, dev_data->chunk_len);
transfer_next_chunk(dev_data->dev);
}
}
static int init_spim(const struct device *dev)
{
struct spi_nrfx_data *data = get_dev_data(dev);
nrfx_err_t result;
data->dev = dev;
/* This sets only default values of frequency, mode and bit order.
* The proper ones are set in configure() when a transfer is started.
*/
result = nrfx_spim_init(&get_dev_config(dev)->spim,
&get_dev_config(dev)->config,
event_handler,
data);
if (result != NRFX_SUCCESS) {
LOG_ERR("Failed to initialize device: %s", dev->name);
return -EBUSY;
}
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
data->pm_state = DEVICE_PM_ACTIVE_STATE;
#endif
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
static int spim_nrfx_pm_control(const struct device *dev,
uint32_t ctrl_command,
void *context, device_pm_cb cb, void *arg)
{
int ret = 0;
struct spi_nrfx_data *data = get_dev_data(dev);
const struct spi_nrfx_config *config = get_dev_config(dev);
if (ctrl_command == DEVICE_PM_SET_POWER_STATE) {
uint32_t new_state = *((const uint32_t *)context);
if (new_state != data->pm_state) {
switch (new_state) {
case DEVICE_PM_ACTIVE_STATE:
ret = init_spim(dev);
/* Force reconfiguration before next transfer */
data->ctx.config = NULL;
break;
case DEVICE_PM_LOW_POWER_STATE:
case DEVICE_PM_SUSPEND_STATE:
case DEVICE_PM_OFF_STATE:
if (data->pm_state == DEVICE_PM_ACTIVE_STATE) {
nrfx_spim_uninit(&config->spim);
}
break;
default:
ret = -ENOTSUP;
}
if (!ret) {
data->pm_state = new_state;
}
}
} else {
__ASSERT_NO_MSG(ctrl_command == DEVICE_PM_GET_POWER_STATE);
*((uint32_t *)context) = data->pm_state;
}
if (cb) {
cb(dev, ret, context, arg);
}
return ret;
}
#endif /* CONFIG_DEVICE_POWER_MANAGEMENT */
/*
* We use NODELABEL here because the nrfx API requires us to call
* functions which are named according to SoC peripheral instance
* being operated on. Since DT_INST() makes no guarantees about that,
* it won't work.
*/
#define SPIM(idx) DT_NODELABEL(spi##idx)
#define SPIM_PROP(idx, prop) DT_PROP(SPIM(idx), prop)
#define SPIM_NRFX_MISO_PULL_DOWN(idx) DT_PROP(SPIM(idx), miso_pull_down)
#define SPIM_NRFX_MISO_PULL_UP(idx) DT_PROP(SPIM(idx), miso_pull_up)
#define SPIM_NRFX_MISO_PULL(idx) \
(SPIM_NRFX_MISO_PULL_UP(idx) \
? SPIM_NRFX_MISO_PULL_DOWN(idx) \
? -1 /* invalid configuration */\
: NRF_GPIO_PIN_PULLUP \
: SPIM_NRFX_MISO_PULL_DOWN(idx) \
? NRF_GPIO_PIN_PULLDOWN \
: NRF_GPIO_PIN_NOPULL)
#define SPI_NRFX_SPIM_EXTENDED_CONFIG(idx) \
IF_ENABLED(NRFX_SPIM_EXTENDED_ENABLED, \
(.dcx_pin = NRFX_SPIM_PIN_NOT_USED, \
IF_ENABLED(SPIM##idx##_FEATURE_RXDELAY_PRESENT, \
(.rx_delay = CONFIG_SPI_##idx##_NRF_RX_DELAY,)) \
))
#define SPI_NRFX_SPIM_DEVICE(idx) \
BUILD_ASSERT( \
!SPIM_NRFX_MISO_PULL_UP(idx) || !SPIM_NRFX_MISO_PULL_DOWN(idx),\
"SPIM"#idx \
": cannot enable both pull-up and pull-down on MISO line"); \
static int spi_##idx##_init(const struct device *dev) \
{ \
IRQ_CONNECT(NRFX_IRQ_NUMBER_GET(NRF_SPIM##idx), \
DT_IRQ(SPIM(idx), priority), \
nrfx_isr, nrfx_spim_##idx##_irq_handler, 0); \
return init_spim(dev); \
} \
static struct spi_nrfx_data spi_##idx##_data = { \
SPI_CONTEXT_INIT_LOCK(spi_##idx##_data, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_##idx##_data, ctx), \
.busy = false, \
}; \
static const struct spi_nrfx_config spi_##idx##z_config = { \
.spim = NRFX_SPIM_INSTANCE(idx), \
.max_chunk_len = (1 << SPIM##idx##_EASYDMA_MAXCNT_SIZE) - 1, \
.config = { \
.sck_pin = SPIM_PROP(idx, sck_pin), \
.mosi_pin = SPIM_PROP(idx, mosi_pin), \
.miso_pin = SPIM_PROP(idx, miso_pin), \
.ss_pin = NRFX_SPIM_PIN_NOT_USED, \
.orc = CONFIG_SPI_##idx##_NRF_ORC, \
.frequency = NRF_SPIM_FREQ_4M, \
.mode = NRF_SPIM_MODE_0, \
.bit_order = NRF_SPIM_BIT_ORDER_MSB_FIRST, \
.miso_pull = SPIM_NRFX_MISO_PULL(idx), \
SPI_NRFX_SPIM_EXTENDED_CONFIG(idx) \
} \
}; \
DEVICE_DEFINE(spi_##idx, \
SPIM_PROP(idx, label), \
spi_##idx##_init, \
spim_nrfx_pm_control, \
&spi_##idx##_data, \
&spi_##idx##z_config, \
POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \
&spi_nrfx_driver_api)
#ifdef CONFIG_SPI_0_NRF_SPIM
SPI_NRFX_SPIM_DEVICE(0);
#endif
#ifdef CONFIG_SPI_1_NRF_SPIM
SPI_NRFX_SPIM_DEVICE(1);
#endif
#ifdef CONFIG_SPI_2_NRF_SPIM
SPI_NRFX_SPIM_DEVICE(2);
#endif
#ifdef CONFIG_SPI_3_NRF_SPIM
SPI_NRFX_SPIM_DEVICE(3);
#endif
#ifdef CONFIG_SPI_4_NRF_SPIM
SPI_NRFX_SPIM_DEVICE(4);
#endif