221 lines
5.1 KiB
C
221 lines
5.1 KiB
C
/*
|
|
* Copyright (c) 2014-2015 Wind River Systems, Inc.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @brief Variables needed needed for system clock
|
|
*
|
|
*
|
|
* Declare variables used by both system timer device driver and kernel
|
|
* components that use timer functionality.
|
|
*/
|
|
|
|
#ifndef ZEPHYR_INCLUDE_SYS_CLOCK_H_
|
|
#define ZEPHYR_INCLUDE_SYS_CLOCK_H_
|
|
|
|
#include <misc/util.h>
|
|
#include <misc/dlist.h>
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#include <toolchain.h>
|
|
#include <zephyr/types.h>
|
|
|
|
#ifdef CONFIG_TICKLESS_KERNEL
|
|
extern int _sys_clock_always_on;
|
|
extern void z_enable_sys_clock(void);
|
|
#endif
|
|
|
|
static inline int sys_clock_hw_cycles_per_sec(void)
|
|
{
|
|
#if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME)
|
|
extern int z_clock_hw_cycles_per_sec;
|
|
|
|
return z_clock_hw_cycles_per_sec;
|
|
#else
|
|
return CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
|
|
#endif
|
|
}
|
|
|
|
/* Note that some systems with comparatively slow cycle counters
|
|
* experience precision loss when doing math like this. In the
|
|
* general case it is not correct that "cycles" are much faster than
|
|
* "ticks".
|
|
*/
|
|
static inline int sys_clock_hw_cycles_per_tick(void)
|
|
{
|
|
#ifdef CONFIG_SYS_CLOCK_EXISTS
|
|
return sys_clock_hw_cycles_per_sec() / CONFIG_SYS_CLOCK_TICKS_PER_SEC;
|
|
#else
|
|
return 1; /* Just to avoid a division by zero */
|
|
#endif
|
|
}
|
|
|
|
#if defined(CONFIG_SYS_CLOCK_EXISTS) && \
|
|
(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC == 0)
|
|
#error "SYS_CLOCK_HW_CYCLES_PER_SEC must be non-zero!"
|
|
#endif
|
|
|
|
/* number of nsec per usec */
|
|
#define NSEC_PER_USEC 1000U
|
|
|
|
/* number of microseconds per millisecond */
|
|
#define USEC_PER_MSEC 1000U
|
|
|
|
/* number of milliseconds per second */
|
|
#define MSEC_PER_SEC 1000U
|
|
|
|
/* number of microseconds per second */
|
|
#define USEC_PER_SEC ((USEC_PER_MSEC) * (MSEC_PER_SEC))
|
|
|
|
/* number of nanoseconds per second */
|
|
#define NSEC_PER_SEC ((NSEC_PER_USEC) * (USEC_PER_MSEC) * (MSEC_PER_SEC))
|
|
|
|
|
|
/* kernel clocks */
|
|
|
|
#ifdef CONFIG_SYS_CLOCK_EXISTS
|
|
|
|
/*
|
|
* If timer frequency is known at compile time, a simple (32-bit)
|
|
* tick <-> ms conversion could be used for some combinations of
|
|
* hardware timer frequency and tick rate. Otherwise precise
|
|
* (64-bit) calculations are used.
|
|
*/
|
|
|
|
#if !defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME)
|
|
#if (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC % CONFIG_SYS_CLOCK_TICKS_PER_SEC) != 0
|
|
#define _NEED_PRECISE_TICK_MS_CONVERSION
|
|
#elif (MSEC_PER_SEC % CONFIG_SYS_CLOCK_TICKS_PER_SEC) != 0
|
|
#define _NON_OPTIMIZED_TICKS_PER_SEC
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME) || \
|
|
defined(_NON_OPTIMIZED_TICKS_PER_SEC)
|
|
#define _NEED_PRECISE_TICK_MS_CONVERSION
|
|
#endif
|
|
#endif
|
|
|
|
static ALWAYS_INLINE s32_t z_ms_to_ticks(s32_t ms)
|
|
{
|
|
#ifdef CONFIG_SYS_CLOCK_EXISTS
|
|
|
|
#ifdef _NEED_PRECISE_TICK_MS_CONVERSION
|
|
/* use 64-bit math to keep precision */
|
|
return (s32_t)ceiling_fraction(
|
|
(s64_t)ms * sys_clock_hw_cycles_per_sec(),
|
|
((s64_t)MSEC_PER_SEC * sys_clock_hw_cycles_per_sec()) /
|
|
CONFIG_SYS_CLOCK_TICKS_PER_SEC);
|
|
#else
|
|
/* simple division keeps precision */
|
|
s32_t ms_per_tick = MSEC_PER_SEC / CONFIG_SYS_CLOCK_TICKS_PER_SEC;
|
|
|
|
return (s32_t)ceiling_fraction(ms, ms_per_tick);
|
|
#endif
|
|
|
|
#else
|
|
__ASSERT(ms == 0, "ms not zero");
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static inline u64_t __ticks_to_ms(s64_t ticks)
|
|
{
|
|
#ifdef CONFIG_SYS_CLOCK_EXISTS
|
|
|
|
#ifdef _NEED_PRECISE_TICK_MS_CONVERSION
|
|
/* use 64-bit math to keep precision */
|
|
return (u64_t)ticks * MSEC_PER_SEC / (u64_t)CONFIG_SYS_CLOCK_TICKS_PER_SEC;
|
|
#else
|
|
/* simple multiplication keeps precision */
|
|
return (u64_t)ticks * MSEC_PER_SEC / (u64_t)CONFIG_SYS_CLOCK_TICKS_PER_SEC;
|
|
#endif
|
|
|
|
#else
|
|
__ASSERT(ticks == 0, "ticks not zero");
|
|
return 0ULL;
|
|
#endif
|
|
}
|
|
|
|
/* added tick needed to account for tick in progress */
|
|
#define _TICK_ALIGN 1
|
|
|
|
/* SYS_CLOCK_HW_CYCLES_TO_NS64 converts CPU clock cycles to nanoseconds */
|
|
#define SYS_CLOCK_HW_CYCLES_TO_NS64(X) \
|
|
(((u64_t)(X) * NSEC_PER_SEC) / sys_clock_hw_cycles_per_sec())
|
|
|
|
/*
|
|
* SYS_CLOCK_HW_CYCLES_TO_NS_AVG converts CPU clock cycles to nanoseconds
|
|
* and calculates the average cycle time
|
|
*/
|
|
#define SYS_CLOCK_HW_CYCLES_TO_NS_AVG(X, NCYCLES) \
|
|
(u32_t)(SYS_CLOCK_HW_CYCLES_TO_NS64(X) / NCYCLES)
|
|
|
|
/**
|
|
* @defgroup clock_apis Kernel Clock APIs
|
|
* @ingroup kernel_apis
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Compute nanoseconds from hardware clock cycles.
|
|
*
|
|
* This macro converts a time duration expressed in hardware clock cycles
|
|
* to the equivalent duration expressed in nanoseconds.
|
|
*
|
|
* @param X Duration in hardware clock cycles.
|
|
*
|
|
* @return Duration in nanoseconds.
|
|
*/
|
|
#define SYS_CLOCK_HW_CYCLES_TO_NS(X) (u32_t)(SYS_CLOCK_HW_CYCLES_TO_NS64(X))
|
|
|
|
/**
|
|
* @} end defgroup clock_apis
|
|
*/
|
|
|
|
/**
|
|
*
|
|
* @brief Return the lower part of the current system tick count
|
|
*
|
|
* @return the current system tick count
|
|
*
|
|
*/
|
|
u32_t z_tick_get_32(void);
|
|
|
|
/**
|
|
*
|
|
* @brief Return the current system tick count
|
|
*
|
|
* @return the current system tick count
|
|
*
|
|
*/
|
|
s64_t z_tick_get(void);
|
|
|
|
#ifndef CONFIG_SYS_CLOCK_EXISTS
|
|
#define z_tick_get() (0)
|
|
#define z_tick_get_32() (0)
|
|
#endif
|
|
|
|
/* timeouts */
|
|
|
|
struct _timeout;
|
|
typedef void (*_timeout_func_t)(struct _timeout *t);
|
|
|
|
struct _timeout {
|
|
sys_dnode_t node;
|
|
s32_t dticks;
|
|
_timeout_func_t fn;
|
|
};
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* ZEPHYR_INCLUDE_SYS_CLOCK_H_ */
|