zephyr/drivers/i2c/i2c_mcux_lpi2c_rtio.c

394 lines
10 KiB
C

/*
* Copyright (c) 2016 Freescale Semiconductor, Inc.
* Copyright 2019-2023, NXP
* Copyright (c) 2022 Vestas Wind Systems A/S
* Copyright (c) 2024 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_imx_lpi2c
#include <errno.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/drivers/i2c/rtio.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/kernel.h>
#include <zephyr/irq.h>
#include <fsl_lpi2c.h>
#include <zephyr/drivers/pinctrl.h>
#ifdef CONFIG_I2C_MCUX_LPI2C_BUS_RECOVERY
#include "i2c_bitbang.h"
#include <zephyr/drivers/gpio.h>
#endif /* CONFIG_I2C_MCUX_LPI2C_BUS_RECOVERY */
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(mcux_lpi2c);
#include "i2c-priv.h"
/* Wait for the duration of 12 bits to detect a NAK after a bus
* address scan. (10 appears sufficient, 20% safety factor.)
*/
#define SCAN_DELAY_US(baudrate) (12 * USEC_PER_SEC / baudrate)
/* Required by DEVICE_MMIO_NAMED_* macros */
#define DEV_CFG(_dev) \
((const struct mcux_lpi2c_config *)(_dev)->config)
#define DEV_DATA(_dev) ((struct mcux_lpi2c_data *)(_dev)->data)
struct mcux_lpi2c_config {
DEVICE_MMIO_NAMED_ROM(reg_base);
const struct device *clock_dev;
clock_control_subsys_t clock_subsys;
void (*irq_config_func)(const struct device *dev);
uint32_t bitrate;
uint32_t bus_idle_timeout_ns;
const struct pinctrl_dev_config *pincfg;
#ifdef CONFIG_I2C_MCUX_LPI2C_BUS_RECOVERY
struct gpio_dt_spec scl;
struct gpio_dt_spec sda;
#endif /* CONFIG_I2C_MCUX_LPI2C_BUS_RECOVERY */
};
struct mcux_lpi2c_data {
DEVICE_MMIO_NAMED_RAM(reg_base);
lpi2c_master_handle_t handle;
struct i2c_rtio *ctx;
lpi2c_master_transfer_t transfer;
#ifdef CONFIG_I2C_TARGET
lpi2c_slave_handle_t target_handle;
struct i2c_target_config *target_cfg;
bool target_attached;
bool first_tx;
bool read_active;
bool send_ack;
#endif
};
static int mcux_lpi2c_configure(const struct device *dev,
uint32_t dev_config_raw)
{
struct i2c_rtio *const ctx = ((struct mcux_lpi2c_data *)
dev->data)->ctx;
return i2c_rtio_configure(ctx, dev_config_raw);
}
static int mcux_lpi2c_do_configure(const struct device *dev, uint32_t dev_config_raw)
{
const struct mcux_lpi2c_config *config = dev->config;
LPI2C_Type *base = (LPI2C_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base);
uint32_t clock_freq;
uint32_t baudrate;
if (!(I2C_MODE_CONTROLLER & dev_config_raw)) {
return -EINVAL;
}
if (I2C_ADDR_10_BITS & dev_config_raw) {
return -EINVAL;
}
switch (I2C_SPEED_GET(dev_config_raw)) {
case I2C_SPEED_STANDARD:
baudrate = KHZ(100);
break;
case I2C_SPEED_FAST:
baudrate = KHZ(400);
break;
case I2C_SPEED_FAST_PLUS:
baudrate = MHZ(1);
break;
default:
return -EINVAL;
}
if (clock_control_get_rate(config->clock_dev, config->clock_subsys,
&clock_freq)) {
return -EINVAL;
}
LPI2C_MasterSetBaudRate(base, clock_freq, baudrate);
return 0;
}
static uint32_t mcux_lpi2c_convert_flags(int msg_flags)
{
uint32_t flags = 0U;
if (!(msg_flags & I2C_MSG_STOP)) {
flags |= kLPI2C_TransferNoStopFlag;
}
if (msg_flags & I2C_MSG_RESTART) {
flags |= kLPI2C_TransferRepeatedStartFlag;
}
return flags;
}
static bool mcux_lpi2c_msg_start(const struct device *dev, uint8_t flags,
uint8_t *buf, size_t buf_len, uint16_t i2c_addr)
{
struct mcux_lpi2c_data *data = dev->data;
struct i2c_rtio *ctx = data->ctx;
LPI2C_Type *base = (LPI2C_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base);
lpi2c_master_transfer_t *transfer = &data->transfer;
status_t status;
if (I2C_MSG_ADDR_10_BITS & flags) {
return i2c_rtio_complete(ctx, -ENOTSUP);
}
/* Initialize the transfer descriptor */
transfer->flags = mcux_lpi2c_convert_flags(flags);
/* Prevent the controller to send a start condition between
* messages, except if explicitly requested.
*/
if (ctx->txn_curr != ctx->txn_head && !(flags & I2C_MSG_RESTART)) {
transfer->flags |= kLPI2C_TransferNoStartFlag;
}
transfer->slaveAddress = i2c_addr;
transfer->direction = (flags & I2C_MSG_READ)
? kLPI2C_Read : kLPI2C_Write;
transfer->subaddress = 0;
transfer->subaddressSize = 0;
transfer->data = buf;
transfer->dataSize = buf_len;
/* Start the transfer */
status = LPI2C_MasterTransferNonBlocking(base,
&data->handle, transfer);
/* Return an error if the transfer didn't start successfully
* e.g., if the bus was busy
*/
if (status != kStatus_Success) {
LPI2C_MasterTransferAbort(base, &data->handle);
return i2c_rtio_complete(ctx, -EIO);
}
return false;
}
static void mcux_lpi2c_complete(const struct device *dev, int status);
static bool mcux_lpi2c_start(const struct device *dev)
{
struct mcux_lpi2c_data *data = dev->data;
struct i2c_rtio *ctx = data->ctx;
struct rtio_sqe *sqe = &ctx->txn_curr->sqe;
struct i2c_dt_spec *dt_spec = sqe->iodev->data;
int res = 0;
switch (sqe->op) {
case RTIO_OP_RX:
return mcux_lpi2c_msg_start(dev, I2C_MSG_READ | sqe->iodev_flags,
sqe->rx.buf, sqe->rx.buf_len, dt_spec->addr);
case RTIO_OP_TINY_TX:
return mcux_lpi2c_msg_start(dev, I2C_MSG_WRITE | sqe->iodev_flags,
(uint8_t *)sqe->tiny_tx.buf, sqe->tiny_tx.buf_len,
dt_spec->addr);
case RTIO_OP_TX:
return mcux_lpi2c_msg_start(dev, I2C_MSG_WRITE | sqe->iodev_flags,
(uint8_t *)sqe->tx.buf, sqe->tx.buf_len,
dt_spec->addr);
case RTIO_OP_I2C_CONFIGURE:
res = mcux_lpi2c_do_configure(dev, sqe->i2c_config);
return i2c_rtio_complete(data->ctx, res);
default:
LOG_ERR("Invalid op code %d for submission %p\n", sqe->op, (void *)sqe);
return i2c_rtio_complete(data->ctx, -EINVAL);
}
}
static void mcux_lpi2c_complete(const struct device *dev, status_t status)
{
const struct mcux_lpi2c_config *config = dev->config;
struct mcux_lpi2c_data *data = dev->data;
LPI2C_Type *base = (LPI2C_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base);
struct i2c_rtio *const ctx = data->ctx;
int ret = 0;
/* Return an error if the transfer didn't complete
* successfully. e.g., nak, timeout, lost arbitration
*/
if (status != kStatus_Success) {
LPI2C_MasterTransferAbort(base, &data->handle);
ret = -EIO;
goto out;
}
if (data->transfer.dataSize == 0) {
k_busy_wait(SCAN_DELAY_US(config->bitrate));
if (0 != (base->MSR & LPI2C_MSR_NDF_MASK)) {
LPI2C_MasterTransferAbort(base, &data->handle);
ret = -EIO;
goto out;
}
}
out:
if (i2c_rtio_complete(ctx, ret)) {
mcux_lpi2c_start(dev);
}
}
static void mcux_lpi2c_submit(const struct device *dev, struct rtio_iodev_sqe *iodev_sqe)
{
struct mcux_lpi2c_data *data = dev->data;
struct i2c_rtio *const ctx = data->ctx;
if (i2c_rtio_submit(ctx, iodev_sqe)) {
mcux_lpi2c_start(dev);
}
}
static void mcux_lpi2c_master_transfer_callback(LPI2C_Type *base,
lpi2c_master_handle_t *handle,
status_t status, void *userData)
{
ARG_UNUSED(handle);
ARG_UNUSED(base);
const struct device *dev = userData;
mcux_lpi2c_complete(dev, status);
}
static int mcux_lpi2c_transfer(const struct device *dev, struct i2c_msg *msgs,
uint8_t num_msgs, uint16_t addr)
{
struct i2c_rtio *const ctx = ((struct mcux_lpi2c_data *)
dev->data)->ctx;
return i2c_rtio_transfer(ctx, msgs, num_msgs, addr);
}
static void mcux_lpi2c_isr(const struct device *dev)
{
struct mcux_lpi2c_data *data = dev->data;
LPI2C_Type *base = (LPI2C_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base);
LPI2C_MasterTransferHandleIRQ(base, &data->handle);
}
static int mcux_lpi2c_init(const struct device *dev)
{
const struct mcux_lpi2c_config *config = dev->config;
struct mcux_lpi2c_data *data = dev->data;
LPI2C_Type *base;
uint32_t clock_freq, bitrate_cfg;
lpi2c_master_config_t master_config;
int error;
DEVICE_MMIO_NAMED_MAP(dev, reg_base, K_MEM_CACHE_NONE | K_MEM_DIRECT_MAP);
base = (LPI2C_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base);
if (!device_is_ready(config->clock_dev)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
error = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
if (error) {
return error;
}
if (clock_control_get_rate(config->clock_dev, config->clock_subsys,
&clock_freq)) {
return -EINVAL;
}
LPI2C_MasterGetDefaultConfig(&master_config);
master_config.busIdleTimeout_ns = config->bus_idle_timeout_ns;
LPI2C_MasterInit(base, &master_config, clock_freq);
LPI2C_MasterTransferCreateHandle(base, &data->handle,
mcux_lpi2c_master_transfer_callback,
(void *)dev);
bitrate_cfg = i2c_map_dt_bitrate(config->bitrate);
error = mcux_lpi2c_do_configure(dev, I2C_MODE_CONTROLLER | bitrate_cfg);
if (error) {
return error;
}
config->irq_config_func(dev);
i2c_rtio_init(data->ctx, dev);
return 0;
}
static const struct i2c_driver_api mcux_lpi2c_driver_api = {
.configure = mcux_lpi2c_configure,
.transfer = mcux_lpi2c_transfer,
.iodev_submit = mcux_lpi2c_submit,
};
#if CONFIG_I2C_MCUX_LPI2C_BUS_RECOVERY
#define I2C_MCUX_LPI2C_SCL_INIT(n) .scl = GPIO_DT_SPEC_INST_GET_OR(n, scl_gpios, {0}),
#define I2C_MCUX_LPI2C_SDA_INIT(n) .sda = GPIO_DT_SPEC_INST_GET_OR(n, sda_gpios, {0}),
#else
#define I2C_MCUX_LPI2C_SCL_INIT(n)
#define I2C_MCUX_LPI2C_SDA_INIT(n)
#endif /* CONFIG_I2C_MCUX_LPI2C_BUS_RECOVERY */
#define I2C_MCUX_LPI2C_INIT(n) \
PINCTRL_DT_INST_DEFINE(n); \
\
static void mcux_lpi2c_config_func_##n(const struct device *dev); \
\
static const struct mcux_lpi2c_config mcux_lpi2c_config_##n = { \
DEVICE_MMIO_NAMED_ROM_INIT(reg_base, DT_DRV_INST(n)), \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \
.clock_subsys = \
(clock_control_subsys_t)DT_INST_CLOCKS_CELL(n, name),\
.irq_config_func = mcux_lpi2c_config_func_##n, \
.bitrate = DT_INST_PROP(n, clock_frequency), \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
I2C_MCUX_LPI2C_SCL_INIT(n) \
I2C_MCUX_LPI2C_SDA_INIT(n) \
.bus_idle_timeout_ns = \
UTIL_AND(DT_INST_NODE_HAS_PROP(n, bus_idle_timeout),\
DT_INST_PROP(n, bus_idle_timeout)), \
}; \
\
I2C_RTIO_DEFINE(_i2c##n##_lpi2c_rtio, \
DT_INST_PROP_OR(n, sq_size, CONFIG_I2C_RTIO_SQ_SIZE), \
DT_INST_PROP_OR(n, cq_size, CONFIG_I2C_RTIO_CQ_SIZE)); \
\
static struct mcux_lpi2c_data mcux_lpi2c_data_##n = { \
.ctx = &CONCAT(_i2c, n, _lpi2c_rtio), \
}; \
\
I2C_DEVICE_DT_INST_DEFINE(n, mcux_lpi2c_init, NULL, \
&mcux_lpi2c_data_##n, \
&mcux_lpi2c_config_##n, POST_KERNEL, \
CONFIG_I2C_INIT_PRIORITY, \
&mcux_lpi2c_driver_api); \
\
static void mcux_lpi2c_config_func_##n(const struct device *dev)\
{ \
IRQ_CONNECT(DT_INST_IRQN(n), \
DT_INST_IRQ(n, priority), \
mcux_lpi2c_isr, \
DEVICE_DT_INST_GET(n), 0); \
\
irq_enable(DT_INST_IRQN(n)); \
}
DT_INST_FOREACH_STATUS_OKAY(I2C_MCUX_LPI2C_INIT)