zephyr/drivers/spi/spi_sedi.c

416 lines
11 KiB
C

/*
* Copyright (c) 2023 Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT intel_sedi_spi
#include <zephyr/kernel.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/pm/device.h>
#define LOG_LEVEL CONFIG_SPI_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(spi_sedi);
#include "sedi_driver_spi.h"
#include "spi_context.h"
struct spi_sedi_config {
DEVICE_MMIO_ROM;
sedi_spi_t spi_device;
void (*irq_config)(void);
};
struct spi_sedi_data {
DEVICE_MMIO_RAM;
struct spi_context ctx;
bool tx_data_updated;
bool rx_data_updated;
uint32_t tx_dummy_len;
uint32_t rx_dummy_len;
};
static int spi_sedi_configure(const struct device *dev,
const struct spi_config *config)
{
struct spi_sedi_data *data = dev->data;
const struct spi_sedi_config *info = dev->config;
uint32_t word_size, cpol, cpha, loopback;
if (spi_context_configured(&data->ctx, config) == true) {
return 0;
}
word_size = SPI_WORD_SIZE_GET(config->operation);
sedi_spi_control(info->spi_device, SEDI_SPI_IOCTL_DATA_WIDTH,
word_size);
/* CPOL and CPHA */
cpol = SPI_MODE_GET(config->operation) & SPI_MODE_CPOL;
cpha = SPI_MODE_GET(config->operation) & SPI_MODE_CPHA;
if ((cpol == 0) && (cpha == 0)) {
sedi_spi_control(info->spi_device, SEDI_SPI_IOCTL_CPOL0_CPHA0,
0);
} else if ((cpol == 0) && (cpha == 1U)) {
sedi_spi_control(info->spi_device, SEDI_SPI_IOCTL_CPOL0_CPHA1,
0);
} else if ((cpol == 1) && (cpha == 0U)) {
sedi_spi_control(info->spi_device, SEDI_SPI_IOCTL_CPOL1_CPHA0,
0);
} else {
sedi_spi_control(info->spi_device, SEDI_SPI_IOCTL_CPOL1_CPHA1,
0);
}
/* MSB and LSB */
if (config->operation & SPI_TRANSFER_LSB) {
sedi_spi_control(info->spi_device, SEDI_SPI_IOCTL_LSB, 0);
}
/* Set loopack */
loopback = SPI_MODE_GET(config->operation) & SPI_MODE_LOOP;
sedi_spi_control(info->spi_device, SEDI_SPI_IOCTL_LOOPBACK, loopback);
/* Set baudrate */
sedi_spi_control(info->spi_device, SEDI_SPI_IOCTL_SPEED_SET,
config->frequency);
sedi_spi_control(info->spi_device, SEDI_SPI_IOCTL_CS_HW, config->slave);
data->ctx.config = config;
spi_context_cs_control(&data->ctx, true);
return 0;
}
static int transceive(const struct device *dev, const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs, bool asynchronous,
spi_callback_t cb,
void *userdata)
{
const struct spi_sedi_config *info = dev->config;
struct spi_sedi_data *spi = dev->data;
struct spi_context *ctx = &spi->ctx;
int ret;
uint32_t transfer_bytes = 0;
uint8_t *data_out = NULL, *data_in = NULL;
uint32_t i, dummy_len = 0;
const struct spi_buf *buf;
bool is_multibufs = false;
spi_context_lock(&spi->ctx, asynchronous, cb, userdata, config);
pm_device_busy_set(dev);
/* Power up use default setting */
ret = sedi_spi_set_power(info->spi_device, SEDI_POWER_FULL);
if (ret) {
goto out;
}
/* If need to configure, re-configure */
spi_sedi_configure(dev, config);
spi->tx_data_updated = false;
spi->rx_data_updated = false;
/* Set buffers info */
spi_context_buffers_setup(&spi->ctx, tx_bufs, rx_bufs, 1);
if ((ctx->tx_count > 1) || (ctx->rx_count > 1)) {
is_multibufs = true;
}
if (ctx->tx_count > ctx->rx_count) {
spi->tx_dummy_len = 0;
for (i = ctx->rx_count; i < ctx->tx_count; i++) {
buf = ctx->current_tx + i;
dummy_len += buf->len;
}
spi->rx_dummy_len = dummy_len;
} else if (ctx->tx_count < ctx->rx_count) {
spi->rx_dummy_len = 0;
for (i = ctx->tx_count; i < ctx->rx_count; i++) {
buf = ctx->current_rx + i;
dummy_len += buf->len;
}
spi->tx_dummy_len = dummy_len;
} else {
spi->tx_dummy_len = 0;
spi->rx_dummy_len = 0;
}
if ((ctx->tx_len == 0) && (ctx->rx_len == 0)) {
spi_context_cs_control(&spi->ctx, true);
spi_context_complete(&spi->ctx, dev, 0);
return 0;
}
/* For multiple buffers, using continuous mode */
if (is_multibufs) {
sedi_spi_control(info->spi_device, SEDI_SPI_IOCTL_BUFFER_SETS, 1);
}
if (ctx->tx_len == 0) {
/* rx only, nothing to tx */
data_out = NULL;
data_in = (uint8_t *)ctx->rx_buf;
transfer_bytes = ctx->rx_len;
spi->tx_dummy_len -= transfer_bytes;
} else if (ctx->rx_len == 0) {
/* tx only, nothing to rx */
data_out = (uint8_t *)ctx->tx_buf;
data_in = NULL;
transfer_bytes = ctx->tx_len;
spi->rx_dummy_len -= transfer_bytes;
} else if (ctx->tx_len == ctx->rx_len) {
/* rx and tx are the same length */
data_out = (uint8_t *)ctx->tx_buf;
data_in = (uint8_t *)ctx->rx_buf;
transfer_bytes = ctx->tx_len;
} else if (ctx->tx_len > ctx->rx_len) {
/* Break up the tx into multiple transfers so we don't have to
* rx into a longer intermediate buffer. Leave chip select
* active between transfers.
*/
data_out = (uint8_t *)ctx->tx_buf;
data_in = ctx->rx_buf;
transfer_bytes = ctx->rx_len;
} else {
/* Break up the rx into multiple transfers so we don't have to
* tx from a longer intermediate buffer. Leave chip select
* active between transfers.
*/
data_out = (uint8_t *)ctx->tx_buf;
data_in = ctx->rx_buf;
transfer_bytes = ctx->tx_len;
}
spi_context_cs_control(&spi->ctx, false);
ret = sedi_spi_transfer(info->spi_device, data_out, data_in,
transfer_bytes);
if (ret != SEDI_DRIVER_OK) {
goto out;
}
ret = spi_context_wait_for_completion(&spi->ctx);
if (ret != 0) {
sedi_spi_status_t spi_status = {0};
sedi_spi_get_status(info->spi_device, &spi_status);
/* SPI ABORT */
sedi_spi_control(info->spi_device, SEDI_SPI_IOCTL_ABORT, 0);
/* Toggle GPIO back */
spi_context_cs_control(&spi->ctx, true);
}
out:
spi_context_release(&spi->ctx, ret);
pm_device_busy_clear(dev);
return ret;
}
static int spi_sedi_transceive(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
return transceive(dev, config, tx_bufs, rx_bufs, false, NULL, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_sedi_transceive_async(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t cb,
void *userdata)
{
return transceive(dev, config, tx_bufs, rx_bufs, true, cb, userdata);
}
#endif /* CONFIG_SPI_ASYNC */
static int spi_sedi_release(const struct device *dev,
const struct spi_config *config)
{
struct spi_sedi_data *spi = dev->data;
if (!spi_context_configured(&spi->ctx, config)) {
return -EINVAL;
}
spi_context_unlock_unconditionally(&spi->ctx);
return 0;
}
extern void spi_isr(sedi_spi_t device);
void spi_sedi_callback(uint32_t event, void *param)
{
const struct device *dev = (const struct device *)param;
const struct spi_sedi_config *info = dev->config;
struct spi_sedi_data *spi = dev->data;
struct spi_context *ctx = &spi->ctx;
int error;
if (event == SEDI_SPI_EVENT_DATA_LOST) {
error = -EIO;
} else {
error = 0;
}
if ((event == SEDI_SPI_EVENT_COMPLETE) ||
(event == SEDI_SPI_EVENT_DATA_LOST)) {
spi_context_cs_control(&spi->ctx, true);
spi_context_complete(&spi->ctx, dev, error);
} else if (event == SEDI_SPI_EVENT_TX_FINISHED) {
spi_context_update_tx(ctx, 1, ctx->tx_len);
if (ctx->tx_len != 0) {
sedi_spi_update_tx_buf(info->spi_device, ctx->tx_buf,
ctx->tx_len);
if ((ctx->rx_len == 0) &&
(spi->rx_data_updated == false)) {
/* Update rx length if always no rx */
sedi_spi_update_rx_buf(info->spi_device, NULL,
spi->rx_dummy_len);
spi->rx_data_updated = true;
}
} else if (spi->tx_data_updated == false) {
sedi_spi_update_tx_buf(info->spi_device, NULL,
spi->tx_dummy_len);
spi->tx_data_updated = true;
}
} else if (event == SEDI_SPI_EVENT_RX_FINISHED) {
spi_context_update_rx(ctx, 1, ctx->rx_len);
if (ctx->rx_len != 0) {
sedi_spi_update_rx_buf(info->spi_device, ctx->rx_buf,
ctx->rx_len);
}
}
}
static const struct spi_driver_api sedi_spi_api = {
.transceive = spi_sedi_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_sedi_transceive_async,
#endif /* CONFIG_SPI_ASYNC */
.release = spi_sedi_release,
};
static int spi_sedi_init(const struct device *dev)
{
const struct spi_sedi_config *info = dev->config;
struct spi_sedi_data *spi = dev->data;
int ret;
DEVICE_MMIO_MAP(dev, K_MEM_CACHE_NONE);
ret = sedi_spi_init(info->spi_device, spi_sedi_callback, (void *)dev,
DEVICE_MMIO_GET(dev));
if (ret != SEDI_DRIVER_OK) {
return -ENODEV;
}
/* Init and connect IRQ */
info->irq_config();
spi_context_unlock_unconditionally(&spi->ctx);
return 0;
}
#ifdef CONFIG_PM_DEVICE
static int spi_suspend_device(const struct device *dev)
{
const struct spi_sedi_config *config = dev->config;
if (pm_device_is_busy(dev)) {
return -EBUSY;
}
int ret = sedi_spi_set_power(config->spi_device, SEDI_POWER_SUSPEND);
if (ret != SEDI_DRIVER_OK) {
return -EIO;
}
return 0;
}
static int spi_resume_device_from_suspend(const struct device *dev)
{
const struct spi_sedi_config *config = dev->config;
int ret;
ret = sedi_spi_set_power(config->spi_device, SEDI_POWER_FULL);
if (ret != SEDI_DRIVER_OK) {
return -EIO;
}
pm_device_busy_clear(dev);
return 0;
}
static int spi_sedi_device_ctrl(const struct device *dev,
enum pm_device_action action)
{
int ret = 0;
switch (action) {
case PM_DEVICE_ACTION_SUSPEND:
ret = spi_suspend_device(dev);
break;
case PM_DEVICE_ACTION_RESUME:
ret = spi_resume_device_from_suspend(dev);
break;
default:
ret = -ENOTSUP;
}
return ret;
}
#endif /* CONFIG_PM_DEVICE */
#define SPI_SEDI_IRQ_FLAGS_SENSE0(n) 0
#define SPI_SEDI_IRQ_FLAGS_SENSE1(n) DT_INST_IRQ(n, sense)
#define SPI_SEDI_IRQ_FLAGS(n) \
_CONCAT(SPI_SEDI_IRQ_FLAGS_SENSE, DT_INST_IRQ_HAS_CELL(n, sense))(n)
#define CREATE_SEDI_SPI_INSTANCE(num) \
static void spi_##num##_irq_init(void) \
{ \
IRQ_CONNECT(DT_INST_IRQN(num), \
DT_INST_IRQ(num, priority), \
spi_isr, num, SPI_SEDI_IRQ_FLAGS(num)); \
irq_enable(DT_INST_IRQN(num)); \
} \
static struct spi_sedi_data spi_##num##_data = { \
SPI_CONTEXT_INIT_LOCK(spi_##num##_data, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_##num##_data, ctx), \
}; \
const static struct spi_sedi_config spi_##num##_config = { \
DEVICE_MMIO_ROM_INIT(DT_DRV_INST(num)), \
.spi_device = num, .irq_config = spi_##num##_irq_init, \
}; \
PM_DEVICE_DEFINE(spi_##num, spi_sedi_device_ctrl); \
DEVICE_DT_INST_DEFINE(num, \
&spi_sedi_init, \
PM_DEVICE_GET(spi_##num), \
&spi_##num##_data, \
&spi_##num##_config, \
POST_KERNEL, \
CONFIG_SPI_INIT_PRIORITY, \
&sedi_spi_api);
DT_INST_FOREACH_STATUS_OKAY(CREATE_SEDI_SPI_INSTANCE)