zephyr/drivers/dma/dma_nxp_edma.h

532 lines
16 KiB
C

/*
* Copyright 2024 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef ZEPHYR_DRIVERS_DMA_DMA_NXP_EDMA_H_
#define ZEPHYR_DRIVERS_DMA_DMA_NXP_EDMA_H_
#include <zephyr/device.h>
#include <zephyr/irq.h>
#include <zephyr/drivers/dma.h>
#include <zephyr/logging/log.h>
#include "fsl_edma_soc_rev2.h"
LOG_MODULE_REGISTER(nxp_edma);
/* used for driver binding */
#define DT_DRV_COMPAT nxp_edma
/* workaround the fact that device_map() is not defined for SoCs with no MMU */
#ifndef DEVICE_MMIO_IS_IN_RAM
#define device_map(virt, phys, size, flags) *(virt) = (phys)
#endif /* DEVICE_MMIO_IS_IN_RAM */
/* macros used to parse DTS properties */
/* used in conjunction with LISTIFY which expects F to also take a variable
* number of arguments. Since IDENTITY doesn't do that we need to use a version
* of it which also takes a variable number of arguments.
*/
#define IDENTITY_VARGS(V, ...) IDENTITY(V)
/* used to generate an array of indexes for the channels */
#define _EDMA_CHANNEL_INDEX_ARRAY(inst)\
LISTIFY(DT_INST_PROP_LEN_OR(inst, valid_channels, 0), IDENTITY_VARGS, (,))
/* used to generate an array of indexes for the channels - this is different
* from _EDMA_CHANNEL_INDEX_ARRAY because the number of channels is passed
* explicitly through dma-channels so no need to deduce it from the length
* of the valid-channels property.
*/
#define _EDMA_CHANNEL_INDEX_ARRAY_EXPLICIT(inst)\
LISTIFY(DT_INST_PROP_OR(inst, dma_channels, 0), IDENTITY_VARGS, (,))
/* used to generate an array of indexes for the interrupt */
#define _EDMA_INT_INDEX_ARRAY(inst)\
LISTIFY(DT_NUM_IRQS(DT_INST(inst, DT_DRV_COMPAT)), IDENTITY_VARGS, (,))
/* used to register an ISR/arg pair. TODO: should we also use the priority? */
#define _EDMA_INT_CONNECT(idx, inst) \
IRQ_CONNECT(DT_INST_IRQN_BY_IDX(inst, idx), \
0, edma_isr, \
&channels_##inst[idx], 0)
/* used to declare a struct edma_channel by the non-explicit macro suite */
#define _EDMA_CHANNEL_DECLARE(idx, inst) \
{ \
.id = DT_INST_PROP_BY_IDX(inst, valid_channels, idx), \
.dev = DEVICE_DT_INST_GET(inst), \
.irq = DT_INST_IRQN_BY_IDX(inst, idx), \
}
/* used to declare a struct edma_channel by the explicit macro suite */
#define _EDMA_CHANNEL_DECLARE_EXPLICIT(idx, inst) \
{ \
.id = idx, \
.dev = DEVICE_DT_INST_GET(inst), \
.irq = DT_INST_IRQN_BY_IDX(inst, idx), \
}
/* used to create an array of channel IDs via the valid-channels property */
#define _EDMA_CHANNEL_ARRAY(inst) \
{ FOR_EACH_FIXED_ARG(_EDMA_CHANNEL_DECLARE, (,), \
inst, _EDMA_CHANNEL_INDEX_ARRAY(inst)) }
/* used to create an array of channel IDs via the dma-channels property */
#define _EDMA_CHANNEL_ARRAY_EXPLICIT(inst) \
{ FOR_EACH_FIXED_ARG(_EDMA_CHANNEL_DECLARE_EXPLICIT, (,), inst, \
_EDMA_CHANNEL_INDEX_ARRAY_EXPLICIT(inst)) }
/* used to construct the channel array based on the specified property:
* dma-channels or valid-channels.
*/
#define EDMA_CHANNEL_ARRAY_GET(inst) \
COND_CODE_1(DT_NODE_HAS_PROP(DT_INST(inst, DT_DRV_COMPAT), dma_channels), \
(_EDMA_CHANNEL_ARRAY_EXPLICIT(inst)), \
(_EDMA_CHANNEL_ARRAY(inst)))
#define EDMA_HAL_CFG_GET(inst) \
COND_CODE_1(DT_NODE_HAS_PROP(DT_INST(inst, DT_DRV_COMPAT), hal_cfg_index), \
(s_edmaConfigs[DT_INST_PROP(inst, hal_cfg_index)]), \
(s_edmaConfigs[0]))
/* used to register edma_isr for all specified interrupts */
#define EDMA_CONNECT_INTERRUPTS(inst) \
FOR_EACH_FIXED_ARG(_EDMA_INT_CONNECT, (;), \
inst, _EDMA_INT_INDEX_ARRAY(inst))
#define EDMA_CHANS_ARE_CONTIGUOUS(inst)\
DT_NODE_HAS_PROP(DT_INST(inst, DT_DRV_COMPAT), dma_channels)
/* utility macros */
/* a few words about EDMA_CHAN_PRODUCE_CONSUME_{A/B}:
* - in the context of cyclic buffers we introduce
* the concepts of consumer and producer channels.
*
* - a consumer channel is a channel for which the
* DMA copies data from a buffer, thus leading to
* less data in said buffer (data is consumed with
* each transfer).
*
* - a producer channel is a channel for which the
* DMA copies data into a buffer, thus leading to
* more data in said buffer (data is produced with
* each transfer).
*
* - for consumer channels, each DMA interrupt will
* signal that an amount of data has been consumed
* from the buffer (half of the buffer size if
* HALFMAJOR is enabled, the whole buffer otherwise).
*
* - for producer channels, each DMA interrupt will
* signal that an amount of data has been added
* to the buffer.
*
* - to signal this, the ISR uses EDMA_CHAN_PRODUCE_CONSUME_A
* which will "consume" data from the buffer for
* consumer channels and "produce" data for
* producer channels.
*
* - since the upper layers using this driver need
* to let the EDMA driver know whenever they've produced
* (in the case of consumer channels) or consumed
* data (in the case of producer channels) they can
* do so through the reload() function.
*
* - reload() uses EDMA_CHAN_PRODUCE_CONSUME_B which
* for consumer channels will "produce" data and
* "consume" data for producer channels, thus letting
* the driver know what action the upper layer has
* performed (if the channel is a consumer it's only
* natural that the upper layer will write/produce more
* data to the buffer. The same rationale applies to
* producer channels).
*
* - EDMA_CHAN_PRODUCE_CONSUME_B is just the opposite
* of EDMA_CHAN_PRODUCE_CONSUME_A. If one produces
* data, the other will consume and vice-versa.
*
* - all of this information is valid only in the
* context of cyclic buffers. If this behaviour is
* not enabled, querying the status will simply
* resolve to querying CITER and BITER.
*/
#define EDMA_CHAN_PRODUCE_CONSUME_A(chan, size)\
((chan)->type == CHAN_TYPE_CONSUMER ?\
edma_chan_cyclic_consume(chan, size) :\
edma_chan_cyclic_produce(chan, size))
#define EDMA_CHAN_PRODUCE_CONSUME_B(chan, size)\
((chan)->type == CHAN_TYPE_CONSUMER ?\
edma_chan_cyclic_produce(chan, size) :\
edma_chan_cyclic_consume(chan, size))
enum channel_type {
CHAN_TYPE_CONSUMER = 0,
CHAN_TYPE_PRODUCER,
};
enum channel_state {
CHAN_STATE_INIT = 0,
CHAN_STATE_CONFIGURED,
CHAN_STATE_STARTED,
CHAN_STATE_STOPPED,
CHAN_STATE_SUSPENDED,
};
struct edma_channel {
/* channel ID, needs to be the same as the hardware channel ID */
uint32_t id;
/* pointer to device representing the EDMA instance, used by edma_isr */
const struct device *dev;
/* current state of the channel */
enum channel_state state;
/* type of the channel (PRODUCER/CONSUMER) - only applicable to cyclic
* buffer configurations.
*/
enum channel_type type;
/* argument passed to the user-defined DMA callback */
void *arg;
/* user-defined callback, called at the end of a channel's interrupt
* handling.
*/
dma_callback_t cb;
/* INTID associated with the channel */
int irq;
/* the channel's status */
struct dma_status stat;
/* cyclic buffer size - currently, this is set to head_block's size */
uint32_t bsize;
/* set to true if the channel uses a cyclic buffer configuration */
bool cyclic_buffer;
};
struct edma_data {
/* this needs to be the first member */
struct dma_context ctx;
mm_reg_t regmap;
struct edma_channel *channels;
atomic_t channel_flags;
edma_config_t *hal_cfg;
};
struct edma_config {
uint32_t regmap_phys;
uint32_t regmap_size;
void (*irq_config)(void);
/* true if channels are contiguous. The channels may not be contiguous
* if the valid-channels property is used instead of dma-channels. This
* is used to improve the time complexity of the channel lookup
* function.
*/
bool contiguous_channels;
};
static inline int channel_change_state(struct edma_channel *chan,
enum channel_state next)
{
enum channel_state prev = chan->state;
LOG_DBG("attempting to change state from %d to %d for channel %d", prev, next, chan->id);
/* validate transition */
switch (prev) {
case CHAN_STATE_INIT:
if (next != CHAN_STATE_CONFIGURED) {
return -EPERM;
}
break;
case CHAN_STATE_CONFIGURED:
if (next != CHAN_STATE_STARTED &&
next != CHAN_STATE_CONFIGURED) {
return -EPERM;
}
break;
case CHAN_STATE_STARTED:
if (next != CHAN_STATE_STOPPED &&
next != CHAN_STATE_SUSPENDED) {
return -EPERM;
}
break;
case CHAN_STATE_STOPPED:
if (next != CHAN_STATE_CONFIGURED) {
return -EPERM;
}
break;
case CHAN_STATE_SUSPENDED:
if (next != CHAN_STATE_STARTED &&
next != CHAN_STATE_STOPPED) {
return -EPERM;
}
break;
default:
LOG_ERR("invalid channel previous state: %d", prev);
return -EINVAL;
}
/* transition OK, proceed */
chan->state = next;
return 0;
}
static inline int get_transfer_type(enum dma_channel_direction dir, uint32_t *type)
{
switch (dir) {
case MEMORY_TO_MEMORY:
*type = kEDMA_TransferTypeM2M;
break;
case MEMORY_TO_PERIPHERAL:
*type = kEDMA_TransferTypeM2P;
break;
case PERIPHERAL_TO_MEMORY:
*type = kEDMA_TransferTypeP2M;
break;
default:
LOG_ERR("invalid channel direction: %d", dir);
return -EINVAL;
}
return 0;
}
static inline bool data_size_is_valid(uint16_t size)
{
switch (size) {
case 1:
case 2:
case 4:
case 8:
case 16:
case 32:
case 64:
break;
default:
return false;
}
return true;
}
/* TODO: we may require setting the channel type through DTS
* or through struct dma_config. For now, we'll only support
* MEMORY_TO_PERIPHERAL and PERIPHERAL_TO_MEMORY directions
* and assume that these are bound to a certain channel type.
*/
static inline int edma_set_channel_type(struct edma_channel *chan,
enum dma_channel_direction dir)
{
switch (dir) {
case MEMORY_TO_PERIPHERAL:
chan->type = CHAN_TYPE_CONSUMER;
break;
case PERIPHERAL_TO_MEMORY:
chan->type = CHAN_TYPE_PRODUCER;
break;
default:
LOG_ERR("unsupported transfer direction: %d", dir);
return -ENOTSUP;
}
return 0;
}
/* this function is used in cyclic buffer configurations. What it does
* is it updates the channel's read position based on the number of
* bytes requested. If the number of bytes that's being read is higher
* than the number of bytes available in the buffer (pending_length)
* this will lead to an error. The main point of this check is to
* provide a way for the user to determine if data is consumed at a
* higher rate than it is being produced.
*
* This function is used in edma_isr() for CONSUMER channels to mark
* that data has been consumed (i.e: data has been transferred to the
* destination) (this is done via EDMA_CHAN_PRODUCE_CONSUME_A that's
* called in edma_isr()). For producer channels, this function is used
* in edma_reload() to mark the fact that the user of the EDMA driver
* has consumed data.
*/
static inline int edma_chan_cyclic_consume(struct edma_channel *chan,
uint32_t bytes)
{
if (bytes > chan->stat.pending_length) {
return -EINVAL;
}
chan->stat.read_position =
(chan->stat.read_position + bytes) % chan->bsize;
if (chan->stat.read_position > chan->stat.write_position) {
chan->stat.free = chan->stat.read_position -
chan->stat.write_position;
} else if (chan->stat.read_position == chan->stat.write_position) {
chan->stat.free = chan->bsize;
} else {
chan->stat.free = chan->bsize -
(chan->stat.write_position - chan->stat.read_position);
}
chan->stat.pending_length = chan->bsize - chan->stat.free;
return 0;
}
/* this function is used in cyclic buffer configurations. What it does
* is it updates the channel's write position based on the number of
* bytes requested. If the number of bytes that's being written is higher
* than the number of free bytes in the buffer this will lead to an error.
* The main point of this check is to provide a way for the user to determine
* if data is produced at a higher rate than it is being consumed.
*
* This function is used in edma_isr() for PRODUCER channels to mark
* that data has been produced (i.e: data has been transferred to the
* destination) (this is done via EDMA_CHAN_PRODUCE_CONSUME_A that's
* called in edma_isr()). For consumer channels, this function is used
* in edma_reload() to mark the fact that the user of the EDMA driver
* has produced data.
*/
static inline int edma_chan_cyclic_produce(struct edma_channel *chan,
uint32_t bytes)
{
if (bytes > chan->stat.free) {
return -EINVAL;
}
chan->stat.write_position =
(chan->stat.write_position + bytes) % chan->bsize;
if (chan->stat.write_position > chan->stat.read_position) {
chan->stat.pending_length = chan->stat.write_position -
chan->stat.read_position;
} else if (chan->stat.write_position == chan->stat.read_position) {
chan->stat.pending_length = chan->bsize;
} else {
chan->stat.pending_length = chan->bsize -
(chan->stat.read_position - chan->stat.write_position);
}
chan->stat.free = chan->bsize - chan->stat.pending_length;
return 0;
}
static inline void edma_dump_channel_registers(struct edma_data *data,
uint32_t chan_id)
{
LOG_DBG("dumping channel data for channel %d", chan_id);
LOG_DBG("CH_CSR: 0x%x",
EDMA_ChannelRegRead(data->hal_cfg, chan_id, EDMA_TCD_CH_CSR));
LOG_DBG("CH_ES: 0x%x",
EDMA_ChannelRegRead(data->hal_cfg, chan_id, EDMA_TCD_CH_ES));
LOG_DBG("CH_INT: 0x%x",
EDMA_ChannelRegRead(data->hal_cfg, chan_id, EDMA_TCD_CH_INT));
LOG_DBG("CH_SBR: 0x%x",
EDMA_ChannelRegRead(data->hal_cfg, chan_id, EDMA_TCD_CH_SBR));
LOG_DBG("CH_PRI: 0x%x",
EDMA_ChannelRegRead(data->hal_cfg, chan_id, EDMA_TCD_CH_PRI));
if (EDMA_HAS_MUX(data->hal_cfg)) {
LOG_DBG("CH_MUX: 0x%x",
EDMA_ChannelRegRead(data->hal_cfg, chan_id, EDMA_TCD_CH_MUX));
}
LOG_DBG("TCD_SADDR: 0x%x",
EDMA_ChannelRegRead(data->hal_cfg, chan_id, EDMA_TCD_SADDR));
LOG_DBG("TCD_SOFF: 0x%x",
EDMA_ChannelRegRead(data->hal_cfg, chan_id, EDMA_TCD_SOFF));
LOG_DBG("TCD_ATTR: 0x%x",
EDMA_ChannelRegRead(data->hal_cfg, chan_id, EDMA_TCD_ATTR));
LOG_DBG("TCD_NBYTES: 0x%x",
EDMA_ChannelRegRead(data->hal_cfg, chan_id, EDMA_TCD_NBYTES));
LOG_DBG("TCD_SLAST_SDA: 0x%x",
EDMA_ChannelRegRead(data->hal_cfg, chan_id, EDMA_TCD_SLAST_SDA));
LOG_DBG("TCD_DADDR: 0x%x",
EDMA_ChannelRegRead(data->hal_cfg, chan_id, EDMA_TCD_DADDR));
LOG_DBG("TCD_DOFF: 0x%x",
EDMA_ChannelRegRead(data->hal_cfg, chan_id, EDMA_TCD_DOFF));
LOG_DBG("TCD_CITER: 0x%x",
EDMA_ChannelRegRead(data->hal_cfg, chan_id, EDMA_TCD_CITER));
LOG_DBG("TCD_DLAST_SGA: 0x%x",
EDMA_ChannelRegRead(data->hal_cfg, chan_id, EDMA_TCD_DLAST_SGA));
LOG_DBG("TCD_CSR: 0x%x",
EDMA_ChannelRegRead(data->hal_cfg, chan_id, EDMA_TCD_CSR));
LOG_DBG("TCD_BITER: 0x%x",
EDMA_ChannelRegRead(data->hal_cfg, chan_id, EDMA_TCD_BITER));
}
static inline int set_slast_dlast(struct dma_config *dma_cfg,
uint32_t transfer_type,
struct edma_data *data,
uint32_t chan_id)
{
int32_t slast, dlast;
if (transfer_type == kEDMA_TransferTypeP2M) {
slast = 0;
} else {
switch (dma_cfg->head_block->source_addr_adj) {
case DMA_ADDR_ADJ_INCREMENT:
slast = (int32_t)dma_cfg->head_block->block_size;
break;
case DMA_ADDR_ADJ_DECREMENT:
slast = (-1) * (int32_t)dma_cfg->head_block->block_size;
break;
default:
LOG_ERR("unsupported SADDR adjustment: %d",
dma_cfg->head_block->source_addr_adj);
return -EINVAL;
}
}
if (transfer_type == kEDMA_TransferTypeM2P) {
dlast = 0;
} else {
switch (dma_cfg->head_block->dest_addr_adj) {
case DMA_ADDR_ADJ_INCREMENT:
dlast = (int32_t)dma_cfg->head_block->block_size;
break;
case DMA_ADDR_ADJ_DECREMENT:
dlast = (-1) * (int32_t)dma_cfg->head_block->block_size;
break;
default:
LOG_ERR("unsupported DADDR adjustment: %d",
dma_cfg->head_block->dest_addr_adj);
return -EINVAL;
}
}
LOG_DBG("attempting to commit SLAST %d", slast);
LOG_DBG("attempting to commit DLAST %d", dlast);
/* commit configuration */
EDMA_ChannelRegWrite(data->hal_cfg, chan_id, EDMA_TCD_SLAST_SDA, slast);
EDMA_ChannelRegWrite(data->hal_cfg, chan_id, EDMA_TCD_DLAST_SGA, dlast);
return 0;
}
/* the NXP HAL EDMA driver uses some custom return values
* that need to be converted to standard error codes. This function
* performs exactly this translation.
*/
static inline int to_std_error(int edma_err)
{
switch (edma_err) {
case kStatus_EDMA_InvalidConfiguration:
case kStatus_InvalidArgument:
return -EINVAL;
case kStatus_Busy:
return -EBUSY;
default:
LOG_ERR("unknown EDMA error code: %d", edma_err);
return -EINVAL;
}
}
#endif /* ZEPHYR_DRIVERS_DMA_DMA_NXP_EDMA_H_ */