zephyr/drivers/dma/dma_dw_common.c

853 lines
24 KiB
C

/*
* Copyright (c) 2022 Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <zephyr/drivers/dma.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/device_runtime.h>
#include <soc.h>
#include "dma_dw_common.h"
#define LOG_LEVEL CONFIG_DMA_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(dma_dw_common);
/* number of tries to wait for reset */
#define DW_DMA_CFG_TRIES 10000
void dw_dma_isr(const struct device *dev)
{
const struct dw_dma_dev_cfg *const dev_cfg = dev->config;
struct dw_dma_dev_data *const dev_data = dev->data;
struct dw_dma_chan_data *chan_data;
uint32_t status_tfr = 0U;
uint32_t status_block = 0U;
uint32_t status_err = 0U;
uint32_t status_intr;
uint32_t channel;
status_intr = dw_read(dev_cfg->base, DW_INTR_STATUS);
if (!status_intr) {
LOG_ERR("%s: status_intr = %d", dev->name, status_intr);
}
/* get the source of our IRQ. */
status_block = dw_read(dev_cfg->base, DW_STATUS_BLOCK);
status_tfr = dw_read(dev_cfg->base, DW_STATUS_TFR);
/* TODO: handle errors, just clear them atm */
status_err = dw_read(dev_cfg->base, DW_STATUS_ERR);
if (status_err) {
LOG_ERR("%s: status_err = %d\n", dev->name, status_err);
dw_write(dev_cfg->base, DW_CLEAR_ERR, status_err);
}
/* clear interrupts */
dw_write(dev_cfg->base, DW_CLEAR_BLOCK, status_block);
dw_write(dev_cfg->base, DW_CLEAR_TFR, status_tfr);
/* Dispatch callbacks for channels depending upon the bit set */
while (status_block) {
channel = find_lsb_set(status_block) - 1;
status_block &= ~(1 << channel);
chan_data = &dev_data->chan[channel];
if (chan_data->dma_blkcallback) {
LOG_DBG("%s: Dispatching block complete callback fro channel %d", dev->name,
channel);
/* Ensure the linked list (chan_data->lli) is
* freed in the user callback function once
* all the blocks are transferred.
*/
chan_data->dma_blkcallback(dev,
chan_data->blkuser_data,
channel, DMA_STATUS_BLOCK);
}
}
while (status_tfr) {
channel = find_lsb_set(status_tfr) - 1;
status_tfr &= ~(1 << channel);
chan_data = &dev_data->chan[channel];
/* Transfer complete, channel now idle, a reload
* could safely occur in the callback via dma_config
* and dma_start
*/
chan_data->state = DW_DMA_IDLE;
if (chan_data->dma_tfrcallback) {
LOG_DBG("%s: Dispatching transfer callback for channel %d", dev->name,
channel);
chan_data->dma_tfrcallback(dev,
chan_data->tfruser_data,
channel, DMA_STATUS_COMPLETE);
}
}
}
/* mask address for dma to identify memory space. */
static void dw_dma_mask_address(struct dma_block_config *block_cfg,
struct dw_lli *lli_desc, uint32_t direction)
{
lli_desc->sar = block_cfg->source_address;
lli_desc->dar = block_cfg->dest_address;
switch (direction) {
case MEMORY_TO_PERIPHERAL:
lli_desc->sar |= CONFIG_DMA_DW_HOST_MASK;
break;
case PERIPHERAL_TO_MEMORY:
lli_desc->dar |= CONFIG_DMA_DW_HOST_MASK;
break;
case MEMORY_TO_MEMORY:
lli_desc->sar |= CONFIG_DMA_DW_HOST_MASK;
lli_desc->dar |= CONFIG_DMA_DW_HOST_MASK;
break;
default:
break;
}
}
int dw_dma_config(const struct device *dev, uint32_t channel,
struct dma_config *cfg)
{
const struct dw_dma_dev_cfg *const dev_cfg = dev->config;
struct dw_dma_dev_data *const dev_data = dev->data;
struct dma_block_config *block_cfg;
struct dw_lli *lli_desc;
struct dw_lli *lli_desc_head;
struct dw_lli *lli_desc_tail;
uint32_t msize = 3;/* default msize, 8 bytes */
int ret = 0;
if (channel >= DW_CHAN_COUNT) {
LOG_ERR("%s: invalid dma channel %d", dev->name, channel);
ret = -EINVAL;
goto out;
}
struct dw_dma_chan_data *chan_data = &dev_data->chan[channel];
if (chan_data->state != DW_DMA_IDLE && chan_data->state != DW_DMA_PREPARED) {
LOG_ERR("%s: channel %d must be inactive to reconfigure, currently %d", dev->name,
channel, chan_data->state);
ret = -EBUSY;
goto out;
}
LOG_DBG("%s: channel %d config", dev->name, channel);
__ASSERT_NO_MSG(cfg->source_data_size == cfg->dest_data_size);
__ASSERT_NO_MSG(cfg->source_burst_length == cfg->dest_burst_length);
__ASSERT_NO_MSG(cfg->block_count > 0);
__ASSERT_NO_MSG(cfg->head_block != NULL);
if (cfg->source_data_size != 1 && cfg->source_data_size != 2 &&
cfg->source_data_size != 4 && cfg->source_data_size != 8 &&
cfg->source_data_size != 16) {
LOG_ERR("%s: channel %d 'invalid source_data_size' value %d", dev->name, channel,
cfg->source_data_size);
ret = -EINVAL;
goto out;
}
if (cfg->block_count > CONFIG_DMA_DW_LLI_POOL_SIZE) {
LOG_ERR("%s: channel %d scatter gather list larger than"
" descriptors in pool, consider increasing CONFIG_DMA_DW_LLI_POOL_SIZE",
dev->name, channel);
ret = -EINVAL;
goto out;
}
/* burst_size = (2 ^ msize) */
msize = find_msb_set(cfg->source_burst_length) - 1;
LOG_DBG("%s: channel %d m_size=%d", dev->name, channel, msize);
__ASSERT_NO_MSG(msize < 5);
/* default channel config */
chan_data->direction = cfg->channel_direction;
chan_data->cfg_lo = 0;
chan_data->cfg_hi = 0;
/* setup a list of lli structs. we don't need to allocate */
chan_data->lli = &dev_data->lli_pool[channel][0]; /* TODO allocate here */
chan_data->lli_count = cfg->block_count;
/* zero the scatter gather list */
memset(chan_data->lli, 0, sizeof(struct dw_lli) * chan_data->lli_count);
lli_desc = chan_data->lli;
lli_desc_head = &chan_data->lli[0];
lli_desc_tail = &chan_data->lli[chan_data->lli_count - 1];
chan_data->ptr_data.buffer_bytes = 0;
/* copy the scatter gather list from dma_cfg to dw_lli */
block_cfg = cfg->head_block;
for (int i = 0; i < cfg->block_count; i++) {
__ASSERT_NO_MSG(block_cfg != NULL);
LOG_DBG("%s: copying block_cfg %p to lli_desc %p", dev->name, block_cfg, lli_desc);
/* write CTL_LO for each lli */
switch (cfg->source_data_size) {
case 1:
/* byte at a time transfer */
lli_desc->ctrl_lo |= DW_CTLL_SRC_WIDTH(0);
break;
case 2:
/* non peripheral copies are optimal using words */
switch (cfg->channel_direction) {
case MEMORY_TO_MEMORY:
/* config the src tr width for 32 bit words */
lli_desc->ctrl_lo |= DW_CTLL_SRC_WIDTH(2);
break;
default:
/* config the src width for 16 bit samples */
lli_desc->ctrl_lo |= DW_CTLL_SRC_WIDTH(1);
break;
}
break;
case 4:
/* config the src tr width for 24, 32 bit samples */
lli_desc->ctrl_lo |= DW_CTLL_SRC_WIDTH(2);
break;
default:
LOG_ERR("%s: channel %d invalid src width %d", dev->name, channel,
cfg->source_data_size);
ret = -EINVAL;
goto out;
}
LOG_DBG("%s: source data size: lli_desc %p, ctrl_lo %x", dev->name,
lli_desc, lli_desc->ctrl_lo);
switch (cfg->dest_data_size) {
case 1:
/* byte at a time transfer */
lli_desc->ctrl_lo |= DW_CTLL_DST_WIDTH(0);
break;
case 2:
/* non peripheral copies are optimal using words */
switch (cfg->channel_direction) {
case MEMORY_TO_MEMORY:
/* config the dest tr width for 32 bit words */
lli_desc->ctrl_lo |= DW_CTLL_DST_WIDTH(2);
break;
default:
/* config the dest width for 16 bit samples */
lli_desc->ctrl_lo |= DW_CTLL_DST_WIDTH(1);
break;
}
break;
case 4:
/* config the dest tr width for 24, 32 bit samples */
lli_desc->ctrl_lo |= DW_CTLL_DST_WIDTH(2);
break;
default:
LOG_ERR("%s: channel %d invalid dest width %d", dev->name, channel,
cfg->dest_data_size);
ret = -EINVAL;
goto out;
}
LOG_DBG("%s: dest data size: lli_desc %p, ctrl_lo %x", dev->name,
lli_desc, lli_desc->ctrl_lo);
lli_desc->ctrl_lo |= DW_CTLL_SRC_MSIZE(msize) |
DW_CTLL_DST_MSIZE(msize);
if (cfg->dma_callback) {
lli_desc->ctrl_lo |= DW_CTLL_INT_EN; /* enable interrupt */
}
LOG_DBG("%s: msize, int_en: lli_desc %p, ctrl_lo %x", dev->name,
lli_desc, lli_desc->ctrl_lo);
/* config the SINC and DINC fields of CTL_LO,
* SRC/DST_PER fields of CFG_HI
*/
switch (cfg->channel_direction) {
case MEMORY_TO_MEMORY:
lli_desc->ctrl_lo |= DW_CTLL_FC_M2M | DW_CTLL_SRC_INC |
DW_CTLL_DST_INC;
#if CONFIG_DMA_DW_HW_LLI
LOG_DBG("%s: setting LLP_D_EN, LLP_S_EN in lli_desc->ctrl_lo %x", dev->name,
lli_desc->ctrl_lo);
lli_desc->ctrl_lo |=
DW_CTLL_LLP_S_EN | DW_CTLL_LLP_D_EN;
LOG_DBG("%s: lli_desc->ctrl_lo %x", dev->name, lli_desc->ctrl_lo);
#endif
#if CONFIG_DMA_DW
chan_data->cfg_lo |= DW_CFGL_SRC_SW_HS;
chan_data->cfg_lo |= DW_CFGL_DST_SW_HS;
#endif
break;
case MEMORY_TO_PERIPHERAL:
lli_desc->ctrl_lo |= DW_CTLL_FC_M2P | DW_CTLL_SRC_INC |
DW_CTLL_DST_FIX;
#if CONFIG_DMA_DW_HW_LLI
lli_desc->ctrl_lo |= DW_CTLL_LLP_S_EN;
chan_data->cfg_lo |= DW_CFGL_RELOAD_DST;
#endif
/* Assign a hardware handshake interface (0-15) to the
* destination of the channel
*/
chan_data->cfg_hi |= DW_CFGH_DST(cfg->dma_slot);
#if CONFIG_DMA_DW
chan_data->cfg_lo |= DW_CFGL_SRC_SW_HS;
#endif
break;
case PERIPHERAL_TO_MEMORY:
lli_desc->ctrl_lo |= DW_CTLL_FC_P2M | DW_CTLL_SRC_FIX |
DW_CTLL_DST_INC;
#if CONFIG_DMA_DW_HW_LLI
if (!block_cfg->dest_scatter_en) {
lli_desc->ctrl_lo |= DW_CTLL_LLP_D_EN;
} else {
/* Use contiguous auto-reload. Line 3 in
* table 3-3
*/
lli_desc->ctrl_lo |= DW_CTLL_D_SCAT_EN;
}
chan_data->cfg_lo |= DW_CFGL_RELOAD_SRC;
#endif
/* Assign a hardware handshake interface (0-15) to the
* source of the channel
*/
chan_data->cfg_hi |= DW_CFGH_SRC(cfg->dma_slot);
#if CONFIG_DMA_DW
chan_data->cfg_lo |= DW_CFGL_DST_SW_HS;
#endif
break;
default:
LOG_ERR("%s: channel %d invalid direction %d", dev->name, channel,
cfg->channel_direction);
ret = -EINVAL;
goto out;
}
LOG_DBG("%s: direction: lli_desc %p, ctrl_lo %x, cfg_hi %x, cfg_lo %x", dev->name,
lli_desc, lli_desc->ctrl_lo, chan_data->cfg_hi, chan_data->cfg_lo);
dw_dma_mask_address(block_cfg, lli_desc, cfg->channel_direction);
LOG_DBG("%s: mask address: lli_desc %p, ctrl_lo %x, cfg_hi %x, cfg_lo %x",
dev->name, lli_desc, lli_desc->ctrl_lo, chan_data->cfg_hi,
chan_data->cfg_lo);
if (block_cfg->block_size > DW_CTLH_BLOCK_TS_MASK) {
LOG_ERR("%s: channel %d block size too big %d", dev->name, channel,
block_cfg->block_size);
ret = -EINVAL;
goto out;
}
/* Set class and transfer size */
lli_desc->ctrl_hi |= DW_CTLH_CLASS(dev_data->channel_data->chan[channel].class) |
(block_cfg->block_size & DW_CTLH_BLOCK_TS_MASK);
LOG_DBG("%s: block_size, class: lli_desc %p, ctrl_lo %x, cfg_hi %x, cfg_lo %x",
dev->name, lli_desc, lli_desc->ctrl_lo, chan_data->cfg_hi,
chan_data->cfg_lo);
chan_data->ptr_data.buffer_bytes += block_cfg->block_size;
/* set next descriptor in list */
lli_desc->llp = (uintptr_t)(lli_desc + 1);
LOG_DBG("%s: lli_desc llp %x", dev->name, lli_desc->llp);
/* next descriptor */
lli_desc++;
block_cfg = block_cfg->next_block;
}
#if CONFIG_DMA_DW_HW_LLI
chan_data->cfg_lo |= DW_CFGL_CTL_HI_UPD_EN;
#endif
/* end of list or cyclic buffer */
if (cfg->cyclic) {
lli_desc_tail->llp = (uintptr_t)lli_desc_head;
} else {
lli_desc_tail->llp = 0;
#if CONFIG_DMA_DW_HW_LLI
LOG_DBG("%s: Clearing LLP_S_EN, LLP_D_EN from tail LLI %x", dev->name,
lli_desc_tail->ctrl_lo);
lli_desc_tail->ctrl_lo &= ~(DW_CTLL_LLP_S_EN | DW_CTLL_LLP_D_EN);
LOG_DBG("%s: ctrl_lo %x", dev->name, lli_desc_tail->ctrl_lo);
#endif
}
/* set the initial lli, mark the channel as prepared (ready to be started) */
chan_data->state = DW_DMA_PREPARED;
chan_data->lli_current = chan_data->lli;
/* initialize pointers */
chan_data->ptr_data.start_ptr = DW_DMA_LLI_ADDRESS(chan_data->lli,
chan_data->direction);
chan_data->ptr_data.end_ptr = chan_data->ptr_data.start_ptr +
chan_data->ptr_data.buffer_bytes;
chan_data->ptr_data.current_ptr = chan_data->ptr_data.start_ptr;
chan_data->ptr_data.hw_ptr = chan_data->ptr_data.start_ptr;
/* Configure a callback appropriately depending on whether the
* interrupt is requested at the end of transaction completion or
* at the end of each block.
*/
if (cfg->complete_callback_en) {
chan_data->dma_blkcallback = cfg->dma_callback;
chan_data->blkuser_data = cfg->user_data;
dw_write(dev_cfg->base, DW_MASK_BLOCK, DW_CHAN_UNMASK(channel));
} else {
chan_data->dma_tfrcallback = cfg->dma_callback;
chan_data->tfruser_data = cfg->user_data;
dw_write(dev_cfg->base, DW_MASK_TFR, DW_CHAN_UNMASK(channel));
}
dw_write(dev_cfg->base, DW_MASK_ERR, DW_CHAN_UNMASK(channel));
/* write interrupt clear registers for the channel
* ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, ClearErr
*/
dw_write(dev_cfg->base, DW_CLEAR_TFR, 0x1 << channel);
dw_write(dev_cfg->base, DW_CLEAR_BLOCK, 0x1 << channel);
dw_write(dev_cfg->base, DW_CLEAR_SRC_TRAN, 0x1 << channel);
dw_write(dev_cfg->base, DW_CLEAR_DST_TRAN, 0x1 << channel);
dw_write(dev_cfg->base, DW_CLEAR_ERR, 0x1 << channel);
out:
return ret;
}
bool dw_dma_is_enabled(const struct device *dev, uint32_t channel)
{
const struct dw_dma_dev_cfg *const dev_cfg = dev->config;
return dw_read(dev_cfg->base, DW_DMA_CHAN_EN) & DW_CHAN(channel);
}
int dw_dma_start(const struct device *dev, uint32_t channel)
{
const struct dw_dma_dev_cfg *const dev_cfg = dev->config;
struct dw_dma_dev_data *dev_data = dev->data;
int ret = 0;
/* validate channel */
if (channel >= DW_CHAN_COUNT) {
ret = -EINVAL;
goto out;
}
if (dw_dma_is_enabled(dev, channel)) {
goto out;
}
struct dw_dma_chan_data *chan_data = &dev_data->chan[channel];
/* validate channel state */
if (chan_data->state != DW_DMA_PREPARED) {
LOG_ERR("%s: channel %d not ready ena 0x%x status 0x%x", dev->name, channel,
dw_read(dev_cfg->base, DW_DMA_CHAN_EN), chan_data->state);
ret = -EBUSY;
goto out;
}
/* is valid stream */
if (!chan_data->lli) {
LOG_ERR("%s: channel %d invalid stream", dev->name, channel);
ret = -EINVAL;
goto out;
}
LOG_INF("%s: channel %d start", dev->name, channel);
struct dw_lli *lli = chan_data->lli_current;
#ifdef CONFIG_DMA_DW_HW_LLI
/* LLP mode - write LLP pointer */
uint32_t masked_ctrl_lo = lli->ctrl_lo & (DW_CTLL_LLP_D_EN | DW_CTLL_LLP_S_EN);
uint32_t llp = 0;
if (masked_ctrl_lo) {
llp = (uint32_t)lli;
LOG_DBG("%s: Setting llp", dev->name);
}
dw_write(dev_cfg->base, DW_LLP(channel), llp);
LOG_DBG("%s: ctrl_lo %x, masked ctrl_lo %x, LLP %x", dev->name,
lli->ctrl_lo, masked_ctrl_lo, dw_read(dev_cfg->base, DW_LLP(channel)));
#endif /* CONFIG_DMA_DW_HW_LLI */
/* channel needs to start from scratch, so write SAR and DAR */
#ifdef CONFIG_DMA_64BIT
dw_write(dev_cfg->base, DW_SAR(channel), (uint32_t)(lli->sar & DW_ADDR_MASK_32));
dw_write(dev_cfg->base, DW_SAR_HI(channel), (uint32_t)(lli->sar >> DW_ADDR_RIGHT_SHIFT));
dw_write(dev_cfg->base, DW_DAR(channel), (uint32_t)(lli->dar & DW_ADDR_MASK_32));
dw_write(dev_cfg->base, DW_DAR_HI(channel), (uint32_t)(lli->dar >> DW_ADDR_RIGHT_SHIFT));
#else
dw_write(dev_cfg->base, DW_SAR(channel), lli->sar);
dw_write(dev_cfg->base, DW_DAR(channel), lli->dar);
#endif /* CONFIG_DMA_64BIT */
/* program CTL_LO and CTL_HI */
dw_write(dev_cfg->base, DW_CTRL_LOW(channel), lli->ctrl_lo);
dw_write(dev_cfg->base, DW_CTRL_HIGH(channel), lli->ctrl_hi);
/* program CFG_LO and CFG_HI */
dw_write(dev_cfg->base, DW_CFG_LOW(channel), chan_data->cfg_lo);
dw_write(dev_cfg->base, DW_CFG_HIGH(channel), chan_data->cfg_hi);
#ifdef CONFIG_DMA_64BIT
LOG_DBG("%s: sar %llx, dar %llx, ctrl_lo %x, ctrl_hi %x, cfg_lo %x, cfg_hi %x, llp %x",
dev->name, lli->sar, lli->dar, lli->ctrl_lo, lli->ctrl_hi, chan_data->cfg_lo,
chan_data->cfg_hi, dw_read(dev_cfg->base, DW_LLP(channel))
);
#else
LOG_DBG("%s: sar %x, dar %x, ctrl_lo %x, ctrl_hi %x, cfg_lo %x, cfg_hi %x, llp %x",
dev->name, lli->sar, lli->dar, lli->ctrl_lo, lli->ctrl_hi, chan_data->cfg_lo,
chan_data->cfg_hi, dw_read(dev_cfg->base, DW_LLP(channel))
);
#endif /* CONFIG_DMA_64BIT */
#ifdef CONFIG_DMA_DW_HW_LLI
if (lli->ctrl_lo & DW_CTLL_D_SCAT_EN) {
LOG_DBG("%s: configuring DW_DSR", dev->name);
uint32_t words_per_tfr = (lli->ctrl_hi & DW_CTLH_BLOCK_TS_MASK) >>
((lli->ctrl_lo & DW_CTLL_DST_WIDTH_MASK) >> DW_CTLL_DST_WIDTH_SHIFT);
dw_write(dev_cfg->base, DW_DSR(channel),
DW_DSR_DSC(words_per_tfr) | DW_DSR_DSI(words_per_tfr));
}
#endif /* CONFIG_DMA_DW_HW_LLI */
chan_data->state = DW_DMA_ACTIVE;
/* enable the channel */
dw_write(dev_cfg->base, DW_DMA_CHAN_EN, DW_CHAN_UNMASK(channel));
ret = pm_device_runtime_get(dev);
out:
return ret;
}
int dw_dma_stop(const struct device *dev, uint32_t channel)
{
const struct dw_dma_dev_cfg *const dev_cfg = dev->config;
struct dw_dma_dev_data *dev_data = dev->data;
struct dw_dma_chan_data *chan_data = &dev_data->chan[channel];
enum pm_device_state pm_state;
int ret = 0;
if (channel >= DW_CHAN_COUNT) {
ret = -EINVAL;
goto out;
}
/*
* skip if device is not active. if we get an error for state_get,
* do not skip but check actual hardware state and stop if
* needed
*/
ret = pm_device_state_get(dev, &pm_state);
if (!ret && pm_state != PM_DEVICE_STATE_ACTIVE)
goto out;
if (!dw_dma_is_enabled(dev, channel) && chan_data->state != DW_DMA_SUSPENDED) {
ret = 0;
goto out;
}
#ifdef CONFIG_DMA_DW_HW_LLI
struct dw_lli *lli = chan_data->lli;
int i;
#endif
LOG_INF("%s: channel %d stop", dev->name, channel);
/* Validate the channel state */
if (chan_data->state != DW_DMA_ACTIVE &&
chan_data->state != DW_DMA_SUSPENDED) {
ret = -EINVAL;
goto out;
}
#ifdef CONFIG_DMA_DW_SUSPEND_DRAIN
/* channel cannot be disabled right away, so first we need to)
* suspend it and drain the FIFO
*/
dw_write(dev_cfg->base, DW_CFG_LOW(channel),
chan_data->cfg_lo | DW_CFGL_SUSPEND | DW_CFGL_DRAIN);
/* now we wait for FIFO to be empty */
bool fifo_empty = WAIT_FOR(dw_read(dev_cfg->base, DW_CFG_LOW(channel)) & DW_CFGL_FIFO_EMPTY,
DW_DMA_TIMEOUT, k_busy_wait(DW_DMA_TIMEOUT/10));
if (!fifo_empty) {
LOG_WRN("%s: channel %d drain time out", dev->name, channel);
/* Continue even if draining timed out to make sure that the channel is going to be
* disabled.
* The same channel might be requested for other purpose (or for same) next time
* which will fail if the channel has been left enabled.
*/
}
#endif
dw_write(dev_cfg->base, DW_DMA_CHAN_EN, DW_CHAN_MASK(channel));
/* now we wait for channel to be disabled */
bool is_disabled = WAIT_FOR(!(dw_read(dev_cfg->base, DW_DMA_CHAN_EN) & DW_CHAN(channel)),
DW_DMA_TIMEOUT, k_busy_wait(DW_DMA_TIMEOUT/10));
if (!is_disabled) {
LOG_ERR("%s: channel %d disable timeout", dev->name, channel);
return -ETIMEDOUT;
}
#if CONFIG_DMA_DW_HW_LLI
for (i = 0; i < chan_data->lli_count; i++) {
lli->ctrl_hi &= ~DW_CTLH_DONE(1);
lli++;
}
#endif
chan_data->state = DW_DMA_IDLE;
ret = pm_device_runtime_put(dev);
out:
return ret;
}
int dw_dma_resume(const struct device *dev, uint32_t channel)
{
const struct dw_dma_dev_cfg *const dev_cfg = dev->config;
struct dw_dma_dev_data *dev_data = dev->data;
int ret = 0;
/* Validate channel index */
if (channel >= DW_CHAN_COUNT) {
ret = -EINVAL;
goto out;
}
struct dw_dma_chan_data *chan_data = &dev_data->chan[channel];
/* Validate channel state */
if (chan_data->state != DW_DMA_SUSPENDED) {
ret = -EINVAL;
goto out;
}
LOG_DBG("%s: channel %d resume", dev->name, channel);
dw_write(dev_cfg->base, DW_CFG_LOW(channel), chan_data->cfg_lo);
/* Channel is now active */
chan_data->state = DW_DMA_ACTIVE;
out:
return ret;
}
int dw_dma_suspend(const struct device *dev, uint32_t channel)
{
const struct dw_dma_dev_cfg *const dev_cfg = dev->config;
struct dw_dma_dev_data *dev_data = dev->data;
int ret = 0;
/* Validate channel index */
if (channel >= DW_CHAN_COUNT) {
ret = -EINVAL;
goto out;
}
struct dw_dma_chan_data *chan_data = &dev_data->chan[channel];
/* Validate channel state */
if (chan_data->state != DW_DMA_ACTIVE) {
ret = -EINVAL;
goto out;
}
LOG_DBG("%s: channel %d suspend", dev->name, channel);
dw_write(dev_cfg->base, DW_CFG_LOW(channel),
chan_data->cfg_lo | DW_CFGL_SUSPEND);
/* Channel is now suspended */
chan_data->state = DW_DMA_SUSPENDED;
out:
return ret;
}
int dw_dma_setup(const struct device *dev)
{
const struct dw_dma_dev_cfg *const dev_cfg = dev->config;
int i, ret = 0;
/* we cannot config DMAC if DMAC has been already enabled by host */
if (dw_read(dev_cfg->base, DW_DMA_CFG) != 0) {
dw_write(dev_cfg->base, DW_DMA_CFG, 0x0);
}
for (i = DW_DMA_CFG_TRIES; i > 0; i--) {
if (!dw_read(dev_cfg->base, DW_DMA_CFG)) {
break;
}
}
if (!i) {
LOG_ERR("%s: setup failed", dev->name);
ret = -EIO;
goto out;
}
LOG_DBG("%s: ENTER", dev->name);
for (i = 0; i < DW_CHAN_COUNT; i++) {
dw_read(dev_cfg->base, DW_DMA_CHAN_EN);
}
/* enable the DMA controller */
dw_write(dev_cfg->base, DW_DMA_CFG, 1);
/* mask all interrupts for all 8 channels */
dw_write(dev_cfg->base, DW_MASK_TFR, DW_CHAN_MASK_ALL);
dw_write(dev_cfg->base, DW_MASK_BLOCK, DW_CHAN_MASK_ALL);
dw_write(dev_cfg->base, DW_MASK_SRC_TRAN, DW_CHAN_MASK_ALL);
dw_write(dev_cfg->base, DW_MASK_DST_TRAN, DW_CHAN_MASK_ALL);
dw_write(dev_cfg->base, DW_MASK_ERR, DW_CHAN_MASK_ALL);
#ifdef CONFIG_DMA_DW_FIFO_PARTITION
/* allocate FIFO partitions for each channel */
dw_write(dev_cfg->base, DW_FIFO_PART1_HI,
DW_FIFO_CHx(DW_FIFO_SIZE) | DW_FIFO_CHy(DW_FIFO_SIZE));
dw_write(dev_cfg->base, DW_FIFO_PART1_LO,
DW_FIFO_CHx(DW_FIFO_SIZE) | DW_FIFO_CHy(DW_FIFO_SIZE));
dw_write(dev_cfg->base, DW_FIFO_PART0_HI,
DW_FIFO_CHx(DW_FIFO_SIZE) | DW_FIFO_CHy(DW_FIFO_SIZE));
dw_write(dev_cfg->base, DW_FIFO_PART0_LO,
DW_FIFO_CHx(DW_FIFO_SIZE) | DW_FIFO_CHy(DW_FIFO_SIZE) |
DW_FIFO_UPD);
#endif /* CONFIG_DMA_DW_FIFO_PARTITION */
/* TODO add baytrail/cherrytrail workaround */
out:
return ret;
}
static int dw_dma_avail_data_size(const struct device *dev, uint32_t base,
struct dw_dma_chan_data *chan_data,
uint32_t channel)
{
int32_t read_ptr = chan_data->ptr_data.current_ptr;
int32_t write_ptr = dw_read(base, DW_DAR(channel));
int32_t delta = write_ptr - chan_data->ptr_data.hw_ptr;
int size;
chan_data->ptr_data.hw_ptr = write_ptr;
size = write_ptr - read_ptr;
if (size < 0) {
size += chan_data->ptr_data.buffer_bytes;
} else if (!size) {
/*
* Buffer is either full or empty. If the DMA pointer has
* changed, then the DMA has filled the buffer.
*/
if (delta) {
size = chan_data->ptr_data.buffer_bytes;
} else {
LOG_DBG("%s: channel %d: size is 0!", dev->name, channel);
}
}
LOG_DBG("%s: channel %d: DAR %x reader 0x%x free 0x%x avail 0x%x", dev->name, channel,
write_ptr, read_ptr, chan_data->ptr_data.buffer_bytes - size, size);
return size;
}
static int dw_dma_free_data_size(const struct device *dev, uint32_t base,
struct dw_dma_chan_data *chan_data,
uint32_t channel)
{
int32_t read_ptr = dw_read(base, DW_SAR(channel));
int32_t write_ptr = chan_data->ptr_data.current_ptr;
int32_t delta = read_ptr - chan_data->ptr_data.hw_ptr;
int size;
chan_data->ptr_data.hw_ptr = read_ptr;
size = read_ptr - write_ptr;
if (size < 0) {
size += chan_data->ptr_data.buffer_bytes;
} else if (!size) {
/*
* Buffer is either full or empty. If the DMA pointer has
* changed, then the DMA has emptied the buffer.
*/
if (delta) {
size = chan_data->ptr_data.buffer_bytes;
} else {
LOG_DBG("%s: channel %d: size is 0!", dev->name, channel);
}
}
LOG_DBG("%s: channel %d: SAR %x writer 0x%x free 0x%x avail 0x%x", dev->name, channel,
read_ptr, write_ptr, size, chan_data->ptr_data.buffer_bytes - size);
return size;
}
int dw_dma_get_status(const struct device *dev, uint32_t channel,
struct dma_status *stat)
{
struct dw_dma_dev_data *const dev_data = dev->data;
const struct dw_dma_dev_cfg *const dev_cfg = dev->config;
struct dw_dma_chan_data *chan_data;
if (channel >= DW_CHAN_COUNT) {
return -EINVAL;
}
chan_data = &dev_data->chan[channel];
if (chan_data->direction == MEMORY_TO_MEMORY ||
chan_data->direction == PERIPHERAL_TO_MEMORY) {
stat->pending_length = dw_dma_avail_data_size(dev, dev_cfg->base, chan_data,
channel);
stat->free = chan_data->ptr_data.buffer_bytes - stat->pending_length;
} else {
stat->free = dw_dma_free_data_size(dev, dev_cfg->base, chan_data, channel);
stat->pending_length = chan_data->ptr_data.buffer_bytes - stat->free;
}
#if CONFIG_DMA_DW_HW_LLI
if (!(dw_read(dev_cfg->base, DW_DMA_CHAN_EN) & DW_CHAN(channel))) {
LOG_ERR("%s: xrun detected", dev->name);
return -EPIPE;
}
#endif
return 0;
}