zephyr/subsys/bluetooth/host/hci_ecc.c

358 lines
8.3 KiB
C

/**
* @file hci_ecc.c
* HCI ECC emulation
*/
/*
* Copyright (c) 2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr.h>
#include <sys/atomic.h>
#include <debug/stack.h>
#include <sys/byteorder.h>
#include <tinycrypt/constants.h>
#include <tinycrypt/utils.h>
#include <tinycrypt/ecc.h>
#include <tinycrypt/ecc_dh.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/conn.h>
#include <bluetooth/hci.h>
#include <drivers/bluetooth/hci_driver.h>
#define BT_DBG_ENABLED IS_ENABLED(CONFIG_BT_DEBUG_HCI_CORE)
#define LOG_MODULE_NAME bt_hci_ecc
#include "common/log.h"
#include "hci_ecc.h"
#ifdef CONFIG_BT_HCI_RAW
#include <bluetooth/hci_raw.h>
#include "hci_raw_internal.h"
#else
#include "hci_core.h"
#endif
static struct k_thread ecc_thread_data;
static K_KERNEL_STACK_DEFINE(ecc_thread_stack, CONFIG_BT_HCI_ECC_STACK_SIZE);
/* based on Core Specification 4.2 Vol 3. Part H 2.3.5.6.1 */
static const uint8_t debug_private_key_be[32] = {
0x3f, 0x49, 0xf6, 0xd4, 0xa3, 0xc5, 0x5f, 0x38,
0x74, 0xc9, 0xb3, 0xe3, 0xd2, 0x10, 0x3f, 0x50,
0x4a, 0xff, 0x60, 0x7b, 0xeb, 0x40, 0xb7, 0x99,
0x58, 0x99, 0xb8, 0xa6, 0xcd, 0x3c, 0x1a, 0xbd,
};
enum {
PENDING_PUB_KEY,
PENDING_DHKEY,
USE_DEBUG_KEY,
/* Total number of flags - must be at the end of the enum */
NUM_FLAGS,
};
static ATOMIC_DEFINE(flags, NUM_FLAGS);
static K_SEM_DEFINE(cmd_sem, 0, 1);
static struct {
uint8_t private_key_be[32];
union {
uint8_t public_key_be[64];
uint8_t dhkey_be[32];
};
} ecc;
static void send_cmd_status(uint16_t opcode, uint8_t status)
{
struct bt_hci_evt_cmd_status *evt;
struct bt_hci_evt_hdr *hdr;
struct net_buf *buf;
BT_DBG("opcode %x status %x", opcode, status);
buf = bt_buf_get_evt(BT_HCI_EVT_CMD_STATUS, false, K_FOREVER);
bt_buf_set_type(buf, BT_BUF_EVT);
hdr = net_buf_add(buf, sizeof(*hdr));
hdr->evt = BT_HCI_EVT_CMD_STATUS;
hdr->len = sizeof(*evt);
evt = net_buf_add(buf, sizeof(*evt));
evt->ncmd = 1U;
evt->opcode = sys_cpu_to_le16(opcode);
evt->status = status;
if (IS_ENABLED(CONFIG_BT_RECV_IS_RX_THREAD)) {
bt_recv_prio(buf);
} else {
bt_recv(buf);
}
}
static uint8_t generate_keys(void)
{
do {
int rc;
rc = uECC_make_key(ecc.public_key_be, ecc.private_key_be,
&curve_secp256r1);
if (rc == TC_CRYPTO_FAIL) {
BT_ERR("Failed to create ECC public/private pair");
return BT_HCI_ERR_UNSPECIFIED;
}
/* make sure generated key isn't debug key */
} while (memcmp(ecc.private_key_be, debug_private_key_be, 32) == 0);
if (IS_ENABLED(CONFIG_BT_LOG_SNIFFER_INFO)) {
BT_INFO("SC private key 0x%s", bt_hex(ecc.private_key_be, 32));
}
return 0;
}
static void emulate_le_p256_public_key_cmd(void)
{
struct bt_hci_evt_le_p256_public_key_complete *evt;
struct bt_hci_evt_le_meta_event *meta;
struct bt_hci_evt_hdr *hdr;
struct net_buf *buf;
uint8_t status;
BT_DBG("");
status = generate_keys();
buf = bt_buf_get_rx(BT_BUF_EVT, K_FOREVER);
hdr = net_buf_add(buf, sizeof(*hdr));
hdr->evt = BT_HCI_EVT_LE_META_EVENT;
hdr->len = sizeof(*meta) + sizeof(*evt);
meta = net_buf_add(buf, sizeof(*meta));
meta->subevent = BT_HCI_EVT_LE_P256_PUBLIC_KEY_COMPLETE;
evt = net_buf_add(buf, sizeof(*evt));
evt->status = status;
if (status) {
(void)memset(evt->key, 0, sizeof(evt->key));
} else {
/* Convert X and Y coordinates from big-endian (provided
* by crypto API) to little endian HCI.
*/
sys_memcpy_swap(evt->key, ecc.public_key_be, 32);
sys_memcpy_swap(&evt->key[32], &ecc.public_key_be[32], 32);
}
atomic_clear_bit(flags, PENDING_PUB_KEY);
bt_recv(buf);
}
static void emulate_le_generate_dhkey(void)
{
struct bt_hci_evt_le_generate_dhkey_complete *evt;
struct bt_hci_evt_le_meta_event *meta;
struct bt_hci_evt_hdr *hdr;
struct net_buf *buf;
int ret;
ret = uECC_valid_public_key(ecc.public_key_be, &curve_secp256r1);
if (ret < 0) {
BT_ERR("public key is not valid (ret %d)", ret);
ret = TC_CRYPTO_FAIL;
} else {
bool use_debug = atomic_test_bit(flags, USE_DEBUG_KEY);
ret = uECC_shared_secret(ecc.public_key_be,
use_debug ? debug_private_key_be :
ecc.private_key_be,
ecc.dhkey_be, &curve_secp256r1);
}
buf = bt_buf_get_rx(BT_BUF_EVT, K_FOREVER);
hdr = net_buf_add(buf, sizeof(*hdr));
hdr->evt = BT_HCI_EVT_LE_META_EVENT;
hdr->len = sizeof(*meta) + sizeof(*evt);
meta = net_buf_add(buf, sizeof(*meta));
meta->subevent = BT_HCI_EVT_LE_GENERATE_DHKEY_COMPLETE;
evt = net_buf_add(buf, sizeof(*evt));
if (ret == TC_CRYPTO_FAIL) {
evt->status = BT_HCI_ERR_UNSPECIFIED;
(void)memset(evt->dhkey, 0xff, sizeof(evt->dhkey));
} else {
evt->status = 0U;
/* Convert from big-endian (provided by crypto API) to
* little-endian HCI.
*/
sys_memcpy_swap(evt->dhkey, ecc.dhkey_be, sizeof(ecc.dhkey_be));
}
atomic_clear_bit(flags, PENDING_DHKEY);
bt_recv(buf);
}
static void ecc_thread(void *p1, void *p2, void *p3)
{
while (true) {
k_sem_take(&cmd_sem, K_FOREVER);
if (atomic_test_bit(flags, PENDING_PUB_KEY)) {
emulate_le_p256_public_key_cmd();
} else if (atomic_test_bit(flags, PENDING_DHKEY)) {
emulate_le_generate_dhkey();
} else {
__ASSERT(0, "Unhandled ECC command");
}
}
}
static void clear_ecc_events(struct net_buf *buf)
{
struct bt_hci_cp_le_set_event_mask *cmd;
cmd = (void *)(buf->data + sizeof(struct bt_hci_cmd_hdr));
/*
* don't enable controller ECC events as those will be generated from
* emulation code
*/
cmd->events[0] &= ~0x80; /* LE Read Local P-256 PKey Compl */
cmd->events[1] &= ~0x01; /* LE Generate DHKey Compl Event */
}
static uint8_t le_gen_dhkey(uint8_t *key, uint8_t key_type)
{
if (atomic_test_bit(flags, PENDING_PUB_KEY)) {
return BT_HCI_ERR_CMD_DISALLOWED;
}
if (key_type > BT_HCI_LE_KEY_TYPE_DEBUG) {
return BT_HCI_ERR_INVALID_PARAM;
}
if (atomic_test_and_set_bit(flags, PENDING_DHKEY)) {
return BT_HCI_ERR_CMD_DISALLOWED;
}
/* Convert X and Y coordinates from little-endian HCI to
* big-endian (expected by the crypto API).
*/
sys_memcpy_swap(ecc.public_key_be, key, 32);
sys_memcpy_swap(&ecc.public_key_be[32], &key[32], 32);
atomic_set_bit_to(flags, USE_DEBUG_KEY,
key_type == BT_HCI_LE_KEY_TYPE_DEBUG);
k_sem_give(&cmd_sem);
return BT_HCI_ERR_SUCCESS;
}
static void le_gen_dhkey_v1(struct net_buf *buf)
{
struct bt_hci_cp_le_generate_dhkey *cmd;
uint8_t status;
cmd = (void *)buf->data;
status = le_gen_dhkey(cmd->key, BT_HCI_LE_KEY_TYPE_GENERATED);
net_buf_unref(buf);
send_cmd_status(BT_HCI_OP_LE_GENERATE_DHKEY, status);
}
static void le_gen_dhkey_v2(struct net_buf *buf)
{
struct bt_hci_cp_le_generate_dhkey_v2 *cmd;
uint8_t status;
cmd = (void *)buf->data;
status = le_gen_dhkey(cmd->key, cmd->key_type);
net_buf_unref(buf);
send_cmd_status(BT_HCI_OP_LE_GENERATE_DHKEY_V2, status);
}
static void le_p256_pub_key(struct net_buf *buf)
{
uint8_t status;
net_buf_unref(buf);
if (atomic_test_bit(flags, PENDING_DHKEY)) {
status = BT_HCI_ERR_CMD_DISALLOWED;
} else if (atomic_test_and_set_bit(flags, PENDING_PUB_KEY)) {
status = BT_HCI_ERR_CMD_DISALLOWED;
} else {
k_sem_give(&cmd_sem);
status = BT_HCI_ERR_SUCCESS;
}
send_cmd_status(BT_HCI_OP_LE_P256_PUBLIC_KEY, status);
}
int bt_hci_ecc_send(struct net_buf *buf)
{
if (bt_buf_get_type(buf) == BT_BUF_CMD) {
struct bt_hci_cmd_hdr *chdr = (void *)buf->data;
switch (sys_le16_to_cpu(chdr->opcode)) {
case BT_HCI_OP_LE_P256_PUBLIC_KEY:
net_buf_pull(buf, sizeof(*chdr));
le_p256_pub_key(buf);
return 0;
case BT_HCI_OP_LE_GENERATE_DHKEY:
net_buf_pull(buf, sizeof(*chdr));
le_gen_dhkey_v1(buf);
return 0;
case BT_HCI_OP_LE_GENERATE_DHKEY_V2:
net_buf_pull(buf, sizeof(*chdr));
le_gen_dhkey_v2(buf);
return 0;
case BT_HCI_OP_LE_SET_EVENT_MASK:
clear_ecc_events(buf);
break;
default:
break;
}
}
return bt_dev.drv->send(buf);
}
void bt_hci_ecc_supported_commands(uint8_t *supported_commands)
{
/* LE Read Local P-256 Public Key */
supported_commands[34] |= BIT(1);
/* LE Generate DH Key v1 */
supported_commands[34] |= BIT(2);
/* LE Generate DH Key v2 */
supported_commands[41] |= BIT(2);
}
int default_CSPRNG(uint8_t *dst, unsigned int len)
{
return !bt_rand(dst, len);
}
void bt_hci_ecc_init(void)
{
k_thread_create(&ecc_thread_data, ecc_thread_stack,
K_KERNEL_STACK_SIZEOF(ecc_thread_stack), ecc_thread,
NULL, NULL, NULL, K_PRIO_PREEMPT(10), 0, K_NO_WAIT);
k_thread_name_set(&ecc_thread_data, "BT ECC");
}