zephyr/include/arch/x86/arch.h

334 lines
6.5 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2019 Intel Corp.
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef ZEPHYR_INCLUDE_ARCH_X86_ARCH_H_
#define ZEPHYR_INCLUDE_ARCH_X86_ARCH_H_
#include <devicetree.h>
/* Changing this value will require manual changes to exception and IDT setup
* in locore.S for intel64
*/
#define Z_X86_OOPS_VECTOR 32
#if !defined(_ASMLANGUAGE)
#include <sys/sys_io.h>
#include <zephyr/types.h>
#include <stddef.h>
#include <stdbool.h>
#include <irq.h>
#include <arch/x86/mmustructs.h>
#include <arch/x86/thread_stack.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifdef CONFIG_PCIE_MSI
struct x86_msi_vector {
unsigned int irq;
uint8_t vector;
#ifdef CONFIG_INTEL_VTD_ICTL
bool remap;
uint8_t irte;
#endif
};
typedef struct x86_msi_vector arch_msi_vector_t;
#endif /* CONFIG_PCIE_MSI */
static ALWAYS_INLINE void arch_irq_unlock(unsigned int key)
{
if ((key & 0x00000200U) != 0U) { /* 'IF' bit */
__asm__ volatile ("sti" ::: "memory");
}
}
static ALWAYS_INLINE void sys_out8(uint8_t data, io_port_t port)
{
__asm__ volatile("outb %b0, %w1" :: "a"(data), "Nd"(port));
}
static ALWAYS_INLINE uint8_t sys_in8(io_port_t port)
{
uint8_t ret;
__asm__ volatile("inb %w1, %b0" : "=a"(ret) : "Nd"(port));
return ret;
}
static ALWAYS_INLINE void sys_out16(uint16_t data, io_port_t port)
{
__asm__ volatile("outw %w0, %w1" :: "a"(data), "Nd"(port));
}
static ALWAYS_INLINE uint16_t sys_in16(io_port_t port)
{
uint16_t ret;
__asm__ volatile("inw %w1, %w0" : "=a"(ret) : "Nd"(port));
return ret;
}
static ALWAYS_INLINE void sys_out32(uint32_t data, io_port_t port)
{
__asm__ volatile("outl %0, %w1" :: "a"(data), "Nd"(port));
}
static ALWAYS_INLINE uint32_t sys_in32(io_port_t port)
{
uint32_t ret;
__asm__ volatile("inl %w1, %0" : "=a"(ret) : "Nd"(port));
return ret;
}
static ALWAYS_INLINE void sys_write8(uint8_t data, mm_reg_t addr)
{
__asm__ volatile("movb %0, %1"
:
: "q"(data), "m" (*(volatile uint8_t *)(uintptr_t) addr)
: "memory");
}
static ALWAYS_INLINE uint8_t sys_read8(mm_reg_t addr)
{
uint8_t ret;
__asm__ volatile("movb %1, %0"
: "=q"(ret)
: "m" (*(volatile uint8_t *)(uintptr_t) addr)
: "memory");
return ret;
}
static ALWAYS_INLINE void sys_write16(uint16_t data, mm_reg_t addr)
{
__asm__ volatile("movw %0, %1"
:
: "r"(data), "m" (*(volatile uint16_t *)(uintptr_t) addr)
: "memory");
}
static ALWAYS_INLINE uint16_t sys_read16(mm_reg_t addr)
{
uint16_t ret;
__asm__ volatile("movw %1, %0"
: "=r"(ret)
: "m" (*(volatile uint16_t *)(uintptr_t) addr)
: "memory");
return ret;
}
static ALWAYS_INLINE void sys_write32(uint32_t data, mm_reg_t addr)
{
__asm__ volatile("movl %0, %1"
:
: "r"(data), "m" (*(volatile uint32_t *)(uintptr_t) addr)
: "memory");
}
static ALWAYS_INLINE uint32_t sys_read32(mm_reg_t addr)
{
uint32_t ret;
__asm__ volatile("movl %1, %0"
: "=r"(ret)
: "m" (*(volatile uint32_t *)(uintptr_t) addr)
: "memory");
return ret;
}
static ALWAYS_INLINE void sys_set_bit(mem_addr_t addr, unsigned int bit)
{
__asm__ volatile("btsl %1, %0"
: "+m" (*(volatile uint32_t *) (addr))
: "Ir" (bit)
: "memory");
}
static ALWAYS_INLINE void sys_clear_bit(mem_addr_t addr, unsigned int bit)
{
__asm__ volatile("btrl %1, %0"
: "+m" (*(volatile uint32_t *) (addr))
: "Ir" (bit));
}
static ALWAYS_INLINE int sys_test_bit(mem_addr_t addr, unsigned int bit)
{
int ret;
__asm__ volatile("btl %2, %1;"
"sbb %0, %0"
: "=r" (ret), "+m" (*(volatile uint32_t *) (addr))
: "Ir" (bit));
return ret;
}
static ALWAYS_INLINE int sys_test_and_set_bit(mem_addr_t addr,
unsigned int bit)
{
int ret;
__asm__ volatile("btsl %2, %1;"
"sbb %0, %0"
: "=r" (ret), "+m" (*(volatile uint32_t *) (addr))
: "Ir" (bit));
return ret;
}
static ALWAYS_INLINE int sys_test_and_clear_bit(mem_addr_t addr,
unsigned int bit)
{
int ret;
__asm__ volatile("btrl %2, %1;"
"sbb %0, %0"
: "=r" (ret), "+m" (*(volatile uint32_t *) (addr))
: "Ir" (bit));
return ret;
}
#define sys_bitfield_set_bit sys_set_bit
#define sys_bitfield_clear_bit sys_clear_bit
#define sys_bitfield_test_bit sys_test_bit
#define sys_bitfield_test_and_set_bit sys_test_and_set_bit
#define sys_bitfield_test_and_clear_bit sys_test_and_clear_bit
/*
* Map of IRQ numbers to their assigned vectors. On IA32, this is generated
* at build time and defined via the linker script. On Intel64, it's an array.
*/
extern unsigned char _irq_to_interrupt_vector[];
#define Z_IRQ_TO_INTERRUPT_VECTOR(irq) \
((unsigned int) _irq_to_interrupt_vector[irq])
#endif /* _ASMLANGUAGE */
#ifdef __cplusplus
}
#endif
#include <drivers/interrupt_controller/sysapic.h>
#ifdef CONFIG_X86_64
#include <arch/x86/intel64/arch.h>
#else
#include <arch/x86/ia32/arch.h>
#endif
#include <arch/common/ffs.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifndef _ASMLANGUAGE
extern void arch_irq_enable(unsigned int irq);
extern void arch_irq_disable(unsigned int irq);
extern uint32_t sys_clock_cycle_get_32(void);
static inline uint32_t arch_k_cycle_get_32(void)
{
return sys_clock_cycle_get_32();
}
static ALWAYS_INLINE bool arch_irq_unlocked(unsigned int key)
{
return (key & 0x200) != 0;
}
/**
* @brief read timestamp register, 32-bits only, unserialized
*/
static ALWAYS_INLINE uint32_t z_do_read_cpu_timestamp32(void)
{
uint32_t rv;
__asm__ volatile("rdtsc" : "=a" (rv) : : "%edx");
return rv;
}
/**
* @brief read timestamp register ensuring serialization
*/
static inline uint64_t z_tsc_read(void)
{
union {
struct {
uint32_t lo;
uint32_t hi;
};
uint64_t value;
} rv;
#ifdef CONFIG_X86_64
/*
* According to Intel 64 and IA-32 Architectures Software
* Developers Manual, volume 3, chapter 8.2.5, LFENCE provides
* a more efficient method of controlling memory ordering than
* the CPUID instruction. So use LFENCE here, as all 64-bit
* CPUs have LFENCE.
*/
__asm__ volatile ("lfence");
#else
/* rdtsc & cpuid clobbers eax, ebx, ecx and edx registers */
__asm__ volatile (/* serialize */
"xorl %%eax,%%eax;"
"cpuid"
:
:
: "%eax", "%ebx", "%ecx", "%edx"
);
#endif
#ifdef CONFIG_X86_64
/*
* We cannot use "=A", since this would use %rax on x86_64 and
* return only the lower 32bits of the TSC
*/
__asm__ volatile ("rdtsc" : "=a" (rv.lo), "=d" (rv.hi));
#else
/* "=A" means that value is in eax:edx pair. */
__asm__ volatile ("rdtsc" : "=A" (rv.value));
#endif
return rv.value;
}
static ALWAYS_INLINE void arch_nop(void)
{
__asm__ volatile("nop");
}
#endif /* _ASMLANGUAGE */
#ifdef __cplusplus
}
#endif
#endif /* ZEPHYR_INCLUDE_ARCH_X86_ARCH_H_ */