zephyr/include/i2s.h

430 lines
17 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2017 Piotr Mienkowski
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Public APIs for the I2S (Inter-IC Sound) bus drivers.
*/
#ifndef __I2S_H__
#define __I2S_H__
/**
* @defgroup i2s_interface I2S Interface
* @ingroup io_interfaces
* @brief I2S (Inter-IC Sound) Interface
*
* The I2S API provides support for the standard I2S interface standard as well
* as common non-standard extensions such as PCM Short/Long Frame Sync,
* Left/Right Justified Data Format.
* @{
*/
#include <zephyr/types.h>
#include <device.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
* The following #defines are used to configure the I2S controller.
*/
typedef u8_t i2s_fmt_t;
/** Data Format bit field position. */
#define I2S_FMT_DATA_FORMAT_SHIFT 0
/** Data Format bit field mask. */
#define I2S_FMT_DATA_FORMAT_MASK (0x7 << I2S_FMT_DATA_FORMAT_SHIFT)
/** @brief Standard I2S Data Format.
*
* Serial data is transmitted in twos complement with the MSB first. Both
* Word Select (WS) and Serial Data (SD) signals are sampled on the rising edge
* of the clock signal (SCK). The MSB is always sent one clock period after the
* WS changes. Left channel data are sent first indicated by WS = 0, followed
* by right channel data indicated by WS = 1.
*
* -. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-.
* SCK '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '
* -. .-------------------------------.
* WS '-------------------------------' '----
* -.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.
* SD | |MSB| |...| |LSB| x |...| x |MSB| |...| |LSB| x |...| x |
* -'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'
* | Left channel | Right channel |
*/
#define I2S_FMT_DATA_FORMAT_I2S (0 << I2S_FMT_DATA_FORMAT_SHIFT)
/** @brief PCM Short Frame Sync Data Format.
*
* Serial data is transmitted in twos complement with the MSB first. Both
* Word Select (WS) and Serial Data (SD) signals are sampled on the falling edge
* of the clock signal (SCK). The falling edge of the frame sync signal (WS)
* indicates the start of the PCM word. The frame sync is one clock cycle long.
* An arbitrary number of data words can be sent in one frame.
*
* .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-.
* SCK -' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-
* .---. .---.
* WS -' '- -' '-
* -.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---
* SD | |MSB| |...| |LSB|MSB| |...| |LSB|MSB| |...| |LSB|
* -'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---
* | Word 1 | Word 2 | Word 3 | Word n |
*/
#define I2S_FMT_DATA_FORMAT_PCM_SHORT (1 << I2S_FMT_DATA_FORMAT_SHIFT)
/** @brief PCM Long Frame Sync Data Format.
*
* Serial data is transmitted in twos complement with the MSB first. Both
* Word Select (WS) and Serial Data (SD) signals are sampled on the falling edge
* of the clock signal (SCK). The rising edge of the frame sync signal (WS)
* indicates the start of the PCM word. The frame sync has an arbitrary length,
* however it has to fall before the start of the next frame. An arbitrary
* number of data words can be sent in one frame.
*
* .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-.
* SCK -' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-
* .--- ---. ---. ---. .---
* WS -' '- '- '- -'
* -.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---
* SD | |MSB| |...| |LSB|MSB| |...| |LSB|MSB| |...| |LSB|
* -'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---
* | Word 1 | Word 2 | Word 3 | Word n |
*/
#define I2S_FMT_DATA_FORMAT_PCM_LONG (2 << I2S_FMT_DATA_FORMAT_SHIFT)
/**
* @brief Left Justified Data Format.
*
* Serial data is transmitted in twos complement with the MSB first. Both
* Word Select (WS) and Serial Data (SD) signals are sampled on the rising edge
* of the clock signal (SCK). The bits within the data word are left justified
* such that the MSB is always sent in the clock period following the WS
* transition. Left channel data are sent first indicated by WS = 1, followed
* by right channel data indicated by WS = 0.
*
* .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-.
* SCK -' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-
* .-------------------------------. .-
* WS ---' '-------------------------------'
* ---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.-
* SD |MSB| |...| |LSB| x |...| x |MSB| |...| |LSB| x |...| x |
* ---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'-
* | Left channel | Right channel |
*/
#define I2S_FMT_DATA_FORMAT_LEFT_JUSTIFIED (3 << I2S_FMT_DATA_FORMAT_SHIFT)
/**
* @brief Right Justified Data Format.
*
* Serial data is transmitted in twos complement with the MSB first. Both
* Word Select (WS) and Serial Data (SD) signals are sampled on the rising edge
* of the clock signal (SCK). The bits within the data word are right justified
* such that the LSB is always sent in the clock period preceding the WS
* transition. Left channel data are sent first indicated by WS = 1, followed
* by right channel data indicated by WS = 0.
*
* .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-.
* SCK -' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-
* .-------------------------------. .-
* WS ---' '-------------------------------'
* ---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.-
* SD | x |...| x |MSB| |...| |LSB| x |...| x |MSB| |...| |LSB|
* ---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'-
* | Left channel | Right channel |
*/
#define I2S_FMT_DATA_FORMAT_RIGHT_JUSTIFIED (4 << I2S_FMT_DATA_FORMAT_SHIFT)
/** Send MSB first */
#define I2S_FMT_DATA_ORDER_MSB (0 << 3)
/** Send LSB first */
#define I2S_FMT_DATA_ORDER_LSB (1 << 3)
/** Invert bit ordering, send LSB first */
#define I2S_FMT_DATA_ORDER_INV I2S_FMT_DATA_ORDER_LSB
/** Invert bit clock */
#define I2S_FMT_BIT_CLK_INV (1 << 4)
/** Invert frame clock */
#define I2S_FMT_FRAME_CLK_INV (1 << 5)
typedef u8_t i2s_opt_t;
/** Run bit clock continuously */
#define I2S_OPT_BIT_CLK_CONT (0 << 0)
/** Run bit clock when sending data only */
#define I2S_OPT_BIT_CLK_GATED (1 << 0)
/** I2S driver is bit clock master */
#define I2S_OPT_BIT_CLK_MASTER (0 << 1)
/** I2S driver is bit clock slave */
#define I2S_OPT_BIT_CLK_SLAVE (1 << 1)
/** I2S driver is frame clock master */
#define I2S_OPT_FRAME_CLK_MASTER (0 << 2)
/** I2S driver is frame clock slave */
#define I2S_OPT_FRAME_CLK_SLAVE (1 << 2)
/** @brief Loop back mode.
*
* In loop back mode RX input will be connected internally to TX output.
* This is used primarily for testing.
*/
#define I2S_OPT_LOOPBACK (1 << 7)
enum i2s_dir {
/** Receive data */
I2S_DIR_RX,
/** Transmit data */
I2S_DIR_TX,
};
/** Interface state */
enum i2s_state {
/** @brief The interface is not ready.
*
* The interface was initialized but is not yet ready to receive /
* transmit data. Call i2s_configure() to configure interface and change
* its state to READY.
*/
I2S_STATE_NOT_READY,
/** The interface is ready to receive / transmit data. */
I2S_STATE_READY,
/** The interface is receiving / transmitting data. */
I2S_STATE_RUNNING,
/** The interface is draining its transmit queue. */
I2S_STATE_STOPPING,
/** TX buffer underrun or RX buffer overrun has occurred. */
I2S_STATE_ERROR,
};
/** Trigger command */
enum i2s_trigger_cmd {
/** @brief Start the transmission / reception of data.
*
* If I2S_DIR_TX is set some data has to be queued for transmission by
* the i2s_write() function. This trigger can be used in READY state
* only and changes the interface state to RUNNING.
*/
I2S_TRIGGER_START,
/** @brief Stop the transmission / reception of data.
*
* Stop the transmission / reception of data at the end of the current
* memory block. This trigger can be used in RUNNING state only and at
* first changes the interface state to STOPPING. When the current TX /
* RX block is transmitted / received the state is changed to READY.
* Subsequent START trigger will resume transmission / reception where
* it stopped.
*/
I2S_TRIGGER_STOP,
/** @brief Empty the transmit queue.
*
* Send all data in the transmit queue and stop the transmission.
* If the trigger is applied to the RX queue it has the same effect as
* I2S_TRIGGER_STOP. This trigger can be used in RUNNING state only and
* at first changes the interface state to STOPPING. When all TX blocks
* are transmitted the state is changed to READY.
*/
I2S_TRIGGER_DRAIN,
/** @brief Discard the transmit / receive queue.
*
* Stop the transmission / reception immediately and discard the
* contents of the respective queue. This trigger can be used in any
* state other than NOT_READY and changes the interface state to READY.
*/
I2S_TRIGGER_DROP,
/** @brief Prepare the queues after underrun/overrun error has occurred.
*
* This trigger can be used in ERROR state only and changes the
* interface state to READY.
*/
I2S_TRIGGER_PREPARE,
};
/** @struct i2s_config
* @brief Interface configuration options.
*
* Memory slab pointed to by the mem_slab field has to be defined and
* initialized by the user. For I2S driver to function correctly number of
* memory blocks in a slab has to be at least 2 per queue. Size of the memory
* block should be multiple of frame_size where frame_size = (channels *
* word_size_bytes). As an example 16 bit word will occupy 2 bytes, 24 or 32
* bit word will occupy 4 bytes.
*
* Please check Zephyr Kernel Primer for more information on memory slabs.
*
* @remark When I2S data format is selected parameter channels is ignored,
* number of words in a frame is always 2.
*
* @param word_size Number of bits representing one data word.
* @param channels Number of words per frame.
* @param format Data stream format as defined by I2S_FMT_* constants.
* @param options Configuration options as defined by I2S_OPT_* constants.
* @param frame_clk_freq Frame clock (WS) frequency, this is sampling rate.
* @param mem_slab memory slab to store RX/TX data.
* @param block_size Size of one RX/TX memory block (buffer) in bytes.
* @param timeout Read/Write timeout. Number of milliseconds to wait in case TX
* queue is full, RX queue is empty or one of the special values
* K_NO_WAIT, K_FOREVER.
*/
struct i2s_config {
u8_t word_size;
u8_t channels;
i2s_fmt_t format;
i2s_opt_t options;
u32_t frame_clk_freq;
struct k_mem_slab *mem_slab;
size_t block_size;
s32_t timeout;
};
/**
* @cond INTERNAL_HIDDEN
*
* For internal use only, skip these in public documentation.
*/
struct i2s_driver_api {
int (*configure)(struct device *dev, enum i2s_dir dir,
struct i2s_config *cfg);
int (*read)(struct device *dev, void **mem_block, size_t *size);
int (*write)(struct device *dev, void *mem_block, size_t size);
int (*trigger)(struct device *dev, enum i2s_dir dir,
enum i2s_trigger_cmd cmd);
};
/**
* @endcond
*/
/**
* @brief Configure operation of a host I2S controller.
*
* The dir parameter specifies if Transmit (TX) or Receive (RX) direction
* will be configured by data provided via cfg parameter.
*
* The function can be called in NOT_READY or READY state only. If executed
* successfully the function will change the interface state to READY.
*
* If the function is called with the parameter cfg->frame_clk_freq set to 0
* the interface state will be changed to NOT_READY.
*
* @param dev Pointer to the device structure for the driver instance.
* @param dir Stream direction: RX or TX as defined by I2S_DIR_*
* @param cfg Pointer to the structure containing configuration parameters.
*
* @retval 0 If successful.
* @retval -EINVAL Invalid argument.
*/
static inline int i2s_configure(struct device *dev, enum i2s_dir dir,
struct i2s_config *cfg)
{
const struct i2s_driver_api *api = dev->driver_api;
return api->configure(dev, dir, cfg);
}
/**
* @brief Read data from the RX queue.
*
* Data received by the I2S interface is stored in the RX queue consisting of
* memory blocks preallocated by this function from rx_mem_slab (as defined by
* i2s_configure). Ownership of the RX memory block is passed on to the user
* application which has to release it.
*
* The data is read in chunks equal to the size of the memory block. If the
* interface is in READY state the number of bytes read can be smaller.
*
* If there is no data in the RX queue the function will block waiting for
* the next RX memory block to fill in. This operation can timeout as defined
* by i2s_configure. If the timeout value is set to K_NO_WAIT the function
* is non-blocking.
*
* Reading from the RX queue is possible in any state other than NOT_READY.
* If the interface is in the ERROR state it is still possible to read all the
* valid data stored in RX queue. Afterwards the function will return -EIO
* error.
*
* @param dev Pointer to the device structure for the driver instance.
* @param mem_block Pointer to the RX memory block containing received data.
* @param size Pointer to the variable storing the number of bytes read.
*
* @retval 0 If successful.
* @retval -EIO The interface is in NOT_READY or ERROR state and there are no
* more data blocks in the RX queue.
* @retval -EBUSY Returned without waiting.
* @retval -EAGAIN Waiting period timed out.
*/
static inline int i2s_read(struct device *dev, void **mem_block, size_t *size)
{
const struct i2s_driver_api *api = dev->driver_api;
return api->read(dev, mem_block, size);
}
/**
* @brief Write data to the TX queue.
*
* Data to be sent by the I2S interface is stored first in the TX queue. TX
* queue consists of memory blocks preallocated by the user from tx_mem_slab
* (as defined by i2s_configure). This function takes ownership of the memory
* block and will release it when all data are transmitted.
*
* If there are no free slots in the TX queue the function will block waiting
* for the next TX memory block to be send and removed from the queue. This
* operation can timeout as defined by i2s_configure. If the timeout value is
* set to K_NO_WAIT the function is non-blocking.
*
* Writing to the TX queue is only possible if the interface is in READY or
* RUNNING state.
*
* @param dev Pointer to the device structure for the driver instance.
* @param mem_block Pointer to the TX memory block containing data to be sent.
* @param size Number of bytes to write. This value has to be equal or smaller
* than the size of the memory block.
*
* @retval 0 If successful.
* @retval -EIO The interface is not in READY or RUNNING state.
* @retval -EBUSY Returned without waiting.
* @retval -EAGAIN Waiting period timed out.
*/
static inline int i2s_write(struct device *dev, void *mem_block, size_t size)
{
const struct i2s_driver_api *api = dev->driver_api;
return api->write(dev, mem_block, size);
}
/**
* @brief Send a trigger command.
*
* @param dev Pointer to the device structure for the driver instance.
* @param dir Stream direction: RX or TX.
* @param cmd Trigger command.
*
* @retval 0 If successful.
* @retval -EINVAL Invalid argument.
* @retval -EIO The trigger cannot be executed in the current state or a DMA
* channel cannot be allocated.
* @retval -ENOMEM RX/TX memory block not available.
*/
static inline int i2s_trigger(struct device *dev, enum i2s_dir dir,
enum i2s_trigger_cmd cmd)
{
const struct i2s_driver_api *api = dev->driver_api;
return api->trigger(dev, dir, cmd);
}
#ifdef __cplusplus
}
#endif
/**
* @}
*/
#endif /* __I2S_H__ */