zephyr/drivers/spi/spi_ambiq.c

509 lines
15 KiB
C

/*
* Copyright (c) 2023 Antmicro <www.antmicro.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT ambiq_spi
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(spi_ambiq);
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/spi/rtio.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/kernel.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/policy.h>
#include <zephyr/pm/device_runtime.h>
#include <stdlib.h>
#include <errno.h>
#include "spi_context.h"
#include <am_mcu_apollo.h>
#define PWRCTRL_MAX_WAIT_US 5
typedef int (*ambiq_spi_pwr_func_t)(void);
struct spi_ambiq_config {
uint32_t base;
int size;
uint32_t clock_freq;
const struct pinctrl_dev_config *pcfg;
ambiq_spi_pwr_func_t pwr_func;
void (*irq_config_func)(void);
};
struct spi_ambiq_data {
struct spi_context ctx;
am_hal_iom_config_t iom_cfg;
void *iom_handler;
int inst_idx;
bool cont;
};
typedef void (*spi_context_update_trx)(struct spi_context *ctx, uint8_t dfs, uint32_t len);
#define SPI_WORD_SIZE 8
#define SPI_CS_INDEX 3
#ifdef CONFIG_SPI_AMBIQ_DMA
static __aligned(32) struct {
__aligned(32) uint32_t buf[CONFIG_SPI_DMA_TCB_BUFFER_SIZE];
} spi_dma_tcb_buf[DT_NUM_INST_STATUS_OKAY(DT_DRV_COMPAT)] __attribute__((__section__(".nocache")));
static void spi_ambiq_callback(void *callback_ctxt, uint32_t status)
{
const struct device *dev = callback_ctxt;
struct spi_ambiq_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
/* de-assert cs until transfer finished and no need to hold cs */
if (!data->cont) {
spi_context_cs_control(ctx, false);
}
spi_context_complete(ctx, dev, (status == AM_HAL_STATUS_SUCCESS) ? 0 : -EIO);
}
#endif
static void spi_ambiq_reset(const struct device *dev)
{
struct spi_ambiq_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
/* cancel timed out transaction */
am_hal_iom_disable(data->iom_handler);
/* NULL config to trigger reconfigure on next xfer */
ctx->config = NULL;
spi_context_cs_control(ctx, false);
/* signal any thread waiting on sync semaphore */
spi_context_complete(ctx, dev, -ETIMEDOUT);
/* clean up for next xfer */
k_sem_reset(&ctx->sync);
}
static void spi_ambiq_isr(const struct device *dev)
{
uint32_t ui32Status;
struct spi_ambiq_data *data = dev->data;
am_hal_iom_interrupt_status_get(data->iom_handler, false, &ui32Status);
am_hal_iom_interrupt_clear(data->iom_handler, ui32Status);
am_hal_iom_interrupt_service(data->iom_handler, ui32Status);
}
static int spi_config(const struct device *dev, const struct spi_config *config)
{
struct spi_ambiq_data *data = dev->data;
const struct spi_ambiq_config *cfg = dev->config;
struct spi_context *ctx = &(data->ctx);
data->iom_cfg.eInterfaceMode = AM_HAL_IOM_SPI_MODE;
int ret = 0;
if (spi_context_configured(ctx, config)) {
/* Already configured. No need to do it again. */
return 0;
}
if (SPI_WORD_SIZE_GET(config->operation) != SPI_WORD_SIZE) {
LOG_ERR("Word size must be %d", SPI_WORD_SIZE);
return -ENOTSUP;
}
if ((config->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) {
LOG_ERR("Only supports single mode");
return -ENOTSUP;
}
if (config->operation & SPI_LOCK_ON) {
LOG_ERR("Lock On not supported");
return -ENOTSUP;
}
if (config->operation & SPI_TRANSFER_LSB) {
LOG_ERR("LSB first not supported");
return -ENOTSUP;
}
if (config->operation & SPI_MODE_CPOL) {
if (config->operation & SPI_MODE_CPHA) {
data->iom_cfg.eSpiMode = AM_HAL_IOM_SPI_MODE_3;
} else {
data->iom_cfg.eSpiMode = AM_HAL_IOM_SPI_MODE_2;
}
} else {
if (config->operation & SPI_MODE_CPHA) {
data->iom_cfg.eSpiMode = AM_HAL_IOM_SPI_MODE_1;
} else {
data->iom_cfg.eSpiMode = AM_HAL_IOM_SPI_MODE_0;
}
}
if (config->operation & SPI_OP_MODE_SLAVE) {
LOG_ERR("Slave mode not supported");
return -ENOTSUP;
}
if (config->operation & SPI_MODE_LOOP) {
LOG_ERR("Loopback mode not supported");
return -ENOTSUP;
}
if (cfg->clock_freq > AM_HAL_IOM_MAX_FREQ) {
LOG_ERR("Clock frequency too high");
return -ENOTSUP;
}
/* Select slower of two: SPI bus frequency for SPI device or SPI master clock frequency */
data->iom_cfg.ui32ClockFreq =
(config->frequency ? MIN(config->frequency, cfg->clock_freq) : cfg->clock_freq);
ctx->config = config;
#ifdef CONFIG_SPI_AMBIQ_DMA
data->iom_cfg.pNBTxnBuf = spi_dma_tcb_buf[data->inst_idx].buf;
data->iom_cfg.ui32NBTxnBufLength = CONFIG_SPI_DMA_TCB_BUFFER_SIZE;
#endif
/* Disable IOM instance as it cannot be configured when enabled*/
ret = am_hal_iom_disable(data->iom_handler);
ret = am_hal_iom_configure(data->iom_handler, &data->iom_cfg);
ret = am_hal_iom_enable(data->iom_handler);
return ret;
}
static int spi_ambiq_xfer_half_duplex(const struct device *dev, am_hal_iom_dir_e dir)
{
am_hal_iom_transfer_t trans = {0};
struct spi_ambiq_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
bool is_last = false;
uint32_t rem_num, cur_num = 0;
int ret = 0;
spi_context_update_trx ctx_update;
if (dir == AM_HAL_IOM_FULLDUPLEX) {
return -EINVAL;
} else if (dir == AM_HAL_IOM_RX) {
trans.eDirection = AM_HAL_IOM_RX;
ctx_update = spi_context_update_rx;
} else {
trans.eDirection = AM_HAL_IOM_TX;
ctx_update = spi_context_update_tx;
}
if (dir == AM_HAL_IOM_RX) {
rem_num = ctx->rx_len;
} else {
rem_num = ctx->tx_len;
}
while (rem_num) {
cur_num = (rem_num > AM_HAL_IOM_MAX_TXNSIZE_SPI) ? AM_HAL_IOM_MAX_TXNSIZE_SPI
: rem_num;
trans.ui32NumBytes = cur_num;
trans.pui32TxBuffer = (uint32_t *)ctx->tx_buf;
trans.pui32RxBuffer = (uint32_t *)ctx->rx_buf;
ctx_update(ctx, 1, cur_num);
if ((!spi_context_tx_buf_on(ctx)) && (!spi_context_rx_buf_on(ctx))) {
is_last = true;
}
#ifdef CONFIG_SPI_AMBIQ_DMA
if (AM_HAL_STATUS_SUCCESS !=
am_hal_iom_nonblocking_transfer(data->iom_handler, &trans,
((is_last == true) ? spi_ambiq_callback : NULL),
(void *)dev)) {
return -EIO;
}
if (is_last) {
ret = spi_context_wait_for_completion(ctx);
}
#else
ret = am_hal_iom_blocking_transfer(data->iom_handler, &trans);
#endif
rem_num -= cur_num;
if (ret != 0) {
return -EIO;
}
}
return 0;
}
static int spi_ambiq_xfer_full_duplex(const struct device *dev)
{
am_hal_iom_transfer_t trans = {0};
struct spi_ambiq_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
bool trx_once = (ctx->tx_len == ctx->rx_len);
int ret = 0;
/* Tx and Rx length must be the same for am_hal_iom_spi_blocking_fullduplex */
trans.eDirection = AM_HAL_IOM_FULLDUPLEX;
trans.ui32NumBytes = MIN(ctx->rx_len, ctx->tx_len);
trans.pui32RxBuffer = (uint32_t *)ctx->rx_buf;
trans.pui32TxBuffer = (uint32_t *)ctx->tx_buf;
spi_context_update_tx(ctx, 1, trans.ui32NumBytes);
spi_context_update_rx(ctx, 1, trans.ui32NumBytes);
ret = am_hal_iom_spi_blocking_fullduplex(data->iom_handler, &trans);
if (ret != 0) {
return -EIO;
}
/* Transfer the remaining bytes */
if (!trx_once) {
spi_context_update_trx ctx_update;
if (ctx->tx_len) {
trans.eDirection = AM_HAL_IOM_TX;
trans.ui32NumBytes = ctx->tx_len;
trans.pui32TxBuffer = (uint32_t *)ctx->tx_buf;
ctx_update = spi_context_update_tx;
} else {
trans.eDirection = AM_HAL_IOM_RX;
trans.ui32NumBytes = ctx->rx_len;
trans.pui32RxBuffer = (uint32_t *)ctx->rx_buf;
ctx_update = spi_context_update_rx;
}
ret = am_hal_iom_blocking_transfer(data->iom_handler, &trans);
ctx_update(ctx, 1, trans.ui32NumBytes);
if (ret != 0) {
return -EIO;
}
}
return 0;
}
static int spi_ambiq_xfer(const struct device *dev, const struct spi_config *config)
{
struct spi_ambiq_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
int ret = 0;
data->cont = (config->operation & SPI_HOLD_ON_CS) ? true : false;
spi_context_cs_control(ctx, true);
while (1) {
if (spi_context_tx_buf_on(ctx) && spi_context_rx_buf_on(ctx)) {
if (ctx->rx_buf == ctx->tx_buf) {
spi_context_update_rx(ctx, 1, ctx->rx_len);
} else if (!(config->operation & SPI_HALF_DUPLEX)) {
ret = spi_ambiq_xfer_full_duplex(dev);
if (ret != 0) {
spi_ambiq_reset(dev);
LOG_ERR("SPI full-duplex comm error: %d", ret);
return ret;
}
}
}
if (spi_context_tx_on(ctx)) {
if (ctx->tx_buf == NULL) {
spi_context_update_tx(ctx, 1, ctx->tx_len);
} else {
ret = spi_ambiq_xfer_half_duplex(dev, AM_HAL_IOM_TX);
if (ret != 0) {
spi_ambiq_reset(dev);
LOG_ERR("SPI TX comm error: %d", ret);
return ret;
}
}
} else if (spi_context_rx_on(ctx)) {
if (ctx->rx_buf == NULL) {
spi_context_update_rx(ctx, 1, ctx->rx_len);
} else {
ret = spi_ambiq_xfer_half_duplex(dev, AM_HAL_IOM_RX);
if (ret != 0) {
spi_ambiq_reset(dev);
LOG_ERR("SPI Rx comm error: %d", ret);
return ret;
}
}
} else {
break;
}
}
#ifndef CONFIG_SPI_AMBIQ_DMA
if (!data->cont) {
spi_context_cs_control(ctx, false);
spi_context_complete(ctx, dev, ret);
}
#endif
return ret;
}
static int spi_ambiq_transceive(const struct device *dev, const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
struct spi_ambiq_data *data = dev->data;
int ret;
if (!tx_bufs && !rx_bufs) {
return 0;
}
ret = pm_device_runtime_get(dev);
if (ret < 0) {
LOG_ERR("pm_device_runtime_get failed: %d", ret);
}
/* context setup */
spi_context_lock(&data->ctx, false, NULL, NULL, config);
ret = spi_config(dev, config);
if (ret) {
spi_context_release(&data->ctx, ret);
return ret;
}
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
ret = spi_ambiq_xfer(dev, config);
spi_context_release(&data->ctx, ret);
/* Use async put to avoid useless device suspension/resumption
* when doing consecutive transmission.
*/
ret = pm_device_runtime_put_async(dev, K_MSEC(2));
if (ret < 0) {
LOG_ERR("pm_device_runtime_put failed: %d", ret);
}
return ret;
}
static int spi_ambiq_release(const struct device *dev, const struct spi_config *config)
{
struct spi_ambiq_data *data = dev->data;
am_hal_iom_status_t iom_status;
am_hal_iom_status_get(data->iom_handler, &iom_status);
if ((iom_status.bStatIdle != IOM0_STATUS_IDLEST_IDLE) ||
(iom_status.bStatCmdAct == IOM0_STATUS_CMDACT_ACTIVE) ||
(iom_status.ui32NumPendTransactions)) {
return -EBUSY;
}
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static const struct spi_driver_api spi_ambiq_driver_api = {
.transceive = spi_ambiq_transceive,
#ifdef CONFIG_SPI_RTIO
.iodev_submit = spi_rtio_iodev_default_submit,
#endif
.release = spi_ambiq_release,
};
static int spi_ambiq_init(const struct device *dev)
{
struct spi_ambiq_data *data = dev->data;
const struct spi_ambiq_config *cfg = dev->config;
int ret = 0;
if (AM_HAL_STATUS_SUCCESS !=
am_hal_iom_initialize((cfg->base - IOM0_BASE) / cfg->size, &data->iom_handler)) {
LOG_ERR("Fail to initialize SPI\n");
return -ENXIO;
}
ret = cfg->pwr_func();
ret |= pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
ret |= spi_context_cs_configure_all(&data->ctx);
if (ret < 0) {
LOG_ERR("Fail to config SPI pins\n");
goto end;
}
#ifdef CONFIG_SPI_AMBIQ_DMA
am_hal_iom_interrupt_clear(data->iom_handler, AM_HAL_IOM_INT_CQUPD | AM_HAL_IOM_INT_ERR);
am_hal_iom_interrupt_enable(data->iom_handler, AM_HAL_IOM_INT_CQUPD | AM_HAL_IOM_INT_ERR);
cfg->irq_config_func();
#endif
end:
if (ret < 0) {
am_hal_iom_uninitialize(data->iom_handler);
} else {
spi_context_unlock_unconditionally(&data->ctx);
}
return ret;
}
#ifdef CONFIG_PM_DEVICE
static int spi_ambiq_pm_action(const struct device *dev, enum pm_device_action action)
{
struct spi_ambiq_data *data = dev->data;
uint32_t ret;
am_hal_sysctrl_power_state_e status;
switch (action) {
case PM_DEVICE_ACTION_RESUME:
status = AM_HAL_SYSCTRL_WAKE;
break;
case PM_DEVICE_ACTION_SUSPEND:
status = AM_HAL_SYSCTRL_DEEPSLEEP;
break;
default:
return -ENOTSUP;
}
ret = am_hal_iom_power_ctrl(data->iom_handler, status, true);
if (ret != AM_HAL_STATUS_SUCCESS) {
LOG_ERR("am_hal_iom_power_ctrl failed: %d", ret);
return -EPERM;
} else {
return 0;
}
}
#endif /* CONFIG_PM_DEVICE */
#define AMBIQ_SPI_INIT(n) \
PINCTRL_DT_INST_DEFINE(n); \
static int pwr_on_ambiq_spi_##n(void) \
{ \
uint32_t addr = DT_REG_ADDR(DT_INST_PHANDLE(n, ambiq_pwrcfg)) + \
DT_INST_PHA(n, ambiq_pwrcfg, offset); \
sys_write32((sys_read32(addr) | DT_INST_PHA(n, ambiq_pwrcfg, mask)), addr); \
k_busy_wait(PWRCTRL_MAX_WAIT_US); \
return 0; \
} \
static void spi_irq_config_func_##n(void) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), spi_ambiq_isr, \
DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQN(n)); \
}; \
static struct spi_ambiq_data spi_ambiq_data##n = { \
SPI_CONTEXT_INIT_LOCK(spi_ambiq_data##n, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_ambiq_data##n, ctx), \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx).inst_idx = n}; \
static const struct spi_ambiq_config spi_ambiq_config##n = { \
.base = DT_INST_REG_ADDR(n), \
.size = DT_INST_REG_SIZE(n), \
.clock_freq = DT_INST_PROP(n, clock_frequency), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.irq_config_func = spi_irq_config_func_##n, \
.pwr_func = pwr_on_ambiq_spi_##n}; \
PM_DEVICE_DT_INST_DEFINE(n, spi_ambiq_pm_action); \
DEVICE_DT_INST_DEFINE(n, spi_ambiq_init, PM_DEVICE_DT_INST_GET(n), &spi_ambiq_data##n, \
&spi_ambiq_config##n, POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \
&spi_ambiq_driver_api);
DT_INST_FOREACH_STATUS_OKAY(AMBIQ_SPI_INIT)